Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 556
Filtrar
1.
Mov Disord ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725190

RESUMO

BACKGROUND: Paroxysmal movement disorders are common in Glut1 deficiency syndrome (Glut1DS). Not all patients respond to or tolerate ketogenic diets. OBJECTIVES: The objective was to evaluate the effectiveness and safety of triheptanoin in reducing the frequency of disabling movement disorders in patients with Glut1DS not receiving a ketogenic diet. METHODS: UX007G-CL301 was a randomized, double-blind, placebo-controlled, phase 3 crossover study. After a 6-week run-in, eligible patients were randomized 1:1 to the first sequence (triheptanoin/placebo or placebo/triheptanoin) titration plus maintenance, followed by washout and the opposite sequence titration plus maintenance. The placebo (safflower oil) matched the appearance, taste, and smell of triheptanoin. Open-label triheptanoin was administered in the extension. The frequency of disabling paroxysmal movement disorder events per 4 weeks (recorded by diary during maintenance; primary endpoint) was assessed by Wilcoxon rank-sum test. RESULTS: Forty-three patients (children, n = 16; adults, n = 27) were randomized and treated. There was no difference between triheptanoin and placebo in the mean (interquartile range) number of disabling paroxysmal movement disorder events (14.3 [4.7-38.3] vs. 11.8; [3.2-28.7]; Hodges-Lehmann estimated median difference: 1.46; 95% confidence interval, -1.12 to 4.36; P = 0.2684). Treatment-emergent adverse events were mild/moderate in severity and included diarrhea, vomiting, upper abdominal pain, headache, and nausea. Two patients discontinued the study because of non-serious adverse events that were predominantly gastrointestinal. The study was closed early during the open-label extension because of lack of effectiveness. Seven patients continued to receive triheptanoin compassionately. CONCLUSION: There were no significant differences between the triheptanoin and placebo groups in the frequency of disabling movement disorder events during the double-blind maintenance period. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

2.
Mov Disord ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671545

RESUMO

BACKGROUND/OBJECTIVE: The corticobasal syndrome (CBS) is a complex asymmetric movement disorder, with cognitive impairment. Although commonly associated with the primary 4-repeat-tauopathy of corticobasal degeneration, clinicopathological correlation is poor, and a significant proportion is due to Alzheimer's disease (AD). Synaptic loss is a pathological feature of many clinical and preclinical tauopathies. We therefore measured the degree of synaptic loss in patients with CBS and tested whether synaptic loss differed according to ß-amyloid status. METHODS: Twenty-five people with CBS, and 32 age-/sex-/education-matched healthy controls participated. Regional synaptic density was estimated by [11C]UCB-J non-displaceable binding potential (BPND), AD-tau pathology by [18F]AV-1451 BPND, and gray matter volume by T1-weighted magnetic resonance imaging. Participants with CBS had ß-amyloid imaging with 11C-labeled Pittsburgh Compound-B ([11C]PiB) positron emission tomography. Symptom severity was assessed with the progressive supranuclear palsy-rating-scale, the cortical basal ganglia functional scale, and the revised Addenbrooke's Cognitive Examination. Regional differences in BPND and gray matter volume between groups were assessed by ANOVA. RESULTS: Compared to controls, patients with CBS had higher [18F]AV-1451 uptake, gray matter volume loss, and reduced synaptic density. Synaptic loss was more severe and widespread in the ß-amyloid negative group. Asymmetry of synaptic loss was in line with the clinically most affected side. DISCUSSION: Distinct patterns of [11C]UCB-J and [18F]AV-1451 binding and gray matter volume loss, indicate differences in the pathogenic mechanisms of CBS according to whether it is associated with the presence of Alzheimer's disease or not. This highlights the potential for different therapeutic strategies in CBSs. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

4.
NPJ Parkinsons Dis ; 10(1): 72, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553467

RESUMO

Bi-allelic pathogenic variants in PRKN are the most common cause of autosomal recessive Parkinson's disease (PD). 647 patients with PRKN-PD were included in this international study. The pathogenic variants present were characterised and investigated for their effect on phenotype. Clinical features and progression of PRKN-PD was also assessed. Among 133 variants in index cases (n = 582), there were 58 (43.6%) structural variants, 34 (25.6%) missense, 20 (15%) frameshift, 10 splice site (7.5%%), 9 (6.8%) nonsense and 2 (1.5%) indels. The most frequent variant overall was an exon 3 deletion (n = 145, 12.3%), followed by the p.R275W substitution (n = 117, 10%). Exon3, RING0 protein domain and the ubiquitin-like protein domain were mutational hotspots with 31%, 35.4% and 31.7% of index cases presenting mutations in these regions respectively. The presence of a frameshift or structural variant was associated with a 3.4 ± 1.6 years or a 4.7 ± 1.6 years earlier age at onset of PRKN-PD respectively (p < 0.05). Furthermore, variants located in the N-terminus of the protein, a region enriched with frameshift variants, were associated with an earlier age at onset. The phenotype of PRKN-PD was characterised by slow motor progression, preserved cognition, an excellent motor response to levodopa therapy and later development of motor complications compared to early-onset PD. Non-motor symptoms were however common in PRKN-PD. Our findings on the relationship between the type of variant in PRKN and the phenotype of the disease may have implications for both genetic counselling and the design of precision clinical trials.

5.
Parkinsonism Relat Disord ; 122: 106041, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360507

RESUMO

Our ability to define, understand, and classify Parkinson's disease (PD) has undergone significant changes since the disorder was first described in 1817. Clinical features and neuropathologic signatures can now be supplemented by in-vivo interrogation of genetic and biological substrates of disease, offering great opportunity for further refining the diagnosis of PD. In this mini-review, we discuss the historical perspectives which shaped our thinking surrounding the definition and diagnosis of PD. We highlight the clinical, genetic, pathologic and biologic diversity which underpins the condition, and proceed to discuss how recent developments in our ability to define biologic and pathologic substrates of disease might impact PD definition, diagnosis, individualised prognostication, and personalised clinical care. We argue that Parkinson's 'disease', as currently diagnosed in the clinic, is actually a syndrome. It is the outward manifestation of any array of potential dysfunctional biologic processes, neuropathological changes, and disease aetiologies, which culminate in common outward clinical features which we term PD; each person has their own unique disease, which we can now define with increasing precision. This is an exciting time in PD research and clinical care. Our ability to refine the clinical diagnosis of PD, incorporating in-vivo assessments of disease biology, neuropathology, and neurogenetics may well herald the era of biologically-based, precision medicine approaches PD management. With this however comes a number of challenges, including how to integrate these technologies into clinical practice in a way which is acceptable to patients, promotes meaningful changes to care, and minimises health economic impact.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética
6.
Mov Disord Clin Pract ; 11(2): 136-142, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38386479

RESUMO

BACKGROUND: The merits of classifying the heterogeneous group of essential tremors into essential tremor (ET) and essential tremor plus (ETP) are debated. OBJECTIVES: We studied the electrophysiological and spiral characteristics of tremor in ET and ETP. METHODS: We reviewed standardized videos from a tremor database and clinically classified patients into ET, ETP, or dystonic tremor (DT). The following variables were derived from combined tri-axial accelerometry-surface electromyography (EMG)-peak frequency, total power, peak power, full width half maximum, tremor stability index and EMG-coherence. We analyzed hand-drawn spirals to derive mean deviation, tremor variability, inter-, and intra-loop widths. We compared these variables among the groups. RESULTS: We recruited 72 participants (81.9% male) with mean age 47.7 ± 16.1 years and Fahn-Tolosa-Marin Tremor Rating Scale total score 31.1 ± 14.1. Patients with ET were younger (P = 0.014) and had less severe tremor (P = 0.020) compared to ETP and DT. In ETP group, 48.6% had subtle dystonia. Peak frequency was greater in ETP (7.3 ± 0.3 Hz) compared to DT (6.1 ± 0.4 Hz; P = 0.024). Peak power was greater in ETP and DT for postural tremor. Rest tremor was recordable on accelerometry in 26.7% of ET. Other variables were similar among the groups. CONCLUSION: Electrophysiological evaluation revealed postural tremor of frequency 6 to 7 Hz in ET, ETP, and DT with subtle differences more severe tremor in ETP and DT, and higher frequency in ETP compared to DT. Our findings suggest a similar tremor oscillator in these conditions, supporting the view that these entities are part of a spectrum of tremor disorders, rather than distinct etiological entities.


Assuntos
Distonia , Distúrbios Distônicos , Tremor Essencial , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Distonia/complicações , Distúrbios Distônicos/complicações , Eletromiografia , Tremor Essencial/diagnóstico
9.
Brain ; 147(4): 1412-1422, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37956080

RESUMO

Cortical myoclonus is produced by abnormal neuronal discharges within the sensorimotor cortex, as demonstrated by electrophysiology. Our hypothesis is that the loss of cerebellar inhibitory control over the motor cortex, via cerebello-thalamo-cortical connections, could induce the increased sensorimotor cortical excitability that eventually causes cortical myoclonus. To explore this hypothesis, in the present study we applied anodal transcranial direct current stimulation over the cerebellum of patients affected by cortical myoclonus and healthy controls and assessed its effect on sensorimotor cortex excitability. We expected that anodal cerebellar transcranial direct current stimulation would increase the inhibitory cerebellar drive to the motor cortex and therefore reduce the sensorimotor cortex hyperexcitability observed in cortical myoclonus. Ten patients affected by cortical myoclonus of various aetiology and 10 aged-matched healthy control subjects were included in the study. All participants underwent somatosensory evoked potentials, long-latency reflexes and short-interval intracortical inhibition recording at baseline and immediately after 20 min session of cerebellar anodal transcranial direct current stimulation. In patients, myoclonus was recorded by the means of surface EMG before and after the cerebellar stimulation. Anodal cerebellar transcranial direct current stimulation did not change the above variables in healthy controls, while it significantly increased the amplitude of somatosensory evoked potential cortical components, long-latency reflexes and decreased short-interval intracortical inhibition in patients; alongside, a trend towards worsening of the myoclonus after the cerebellar stimulation was observed. Interestingly, when dividing patients in those with and without giant somatosensory evoked potentials, the increment of the somatosensory evoked potential cortical components was observed mainly in those with giant potentials. Our data showed that anodal cerebellar transcranial direct current stimulation facilitates-and does not inhibit-sensorimotor cortex excitability in cortical myoclonus syndromes. This paradoxical response might be due to an abnormal homeostatic plasticity within the sensorimotor cortex, driven by dysfunctional cerebello-thalamo-cortical input to the motor cortex. We suggest that the cerebellum is implicated in the pathophysiology of cortical myoclonus and that these results could open the way to new forms of treatment or treatment targets.


Assuntos
Mioclonia , Estimulação Transcraniana por Corrente Contínua , Humanos , Idoso , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia , Cerebelo/fisiologia
10.
Eur J Neurol ; 31(3): e16169, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38085264

RESUMO

BACKGROUND AND PURPOSE: Pure autonomic failure (PAF) is a rare progressive neurodegenerative disease characterized by neurogenic orthostatic hypotension at presentation, without other neurological abnormalities. Some patients may develop other central neurological features indicative of multiple system atrophy or a Lewy body disorder. There are currently no biomarkers to assess possible central nervous system involvement in probable PAF at an early stage. A possibility is to evaluate the nigrostriatal dopaminergic degeneration by imaging of dopamine transporter with DaTscan brain imaging. The objective was to evaluate subclinical central nervous system involvement using DaTscan in PAF. METHODS: We retreospectively reviewed pure autonomic failure patients who were evaluated at the Autonomic Unit between January 2015 and August 2021 and underwent comprehensive autonomic assessment, neurological examination, brain magnetic resonance imaging and DaTscan imaging. DaTscan imaging was performed if patients presented with atypical features which did not meet the criteria for Parkinson's disease or multiple system atrophy or other atypical parkinsonism. RESULTS: In this cohort, the median age was 49.5 years at disease onset, 57.5 years at presentation, and the median disease duration was 7.5 years. Five of 10 patients had an abnormal DaTscan without neurological features meeting the criteria of an alternative diagnosis. Patients with abnormal DaTscan were predominantly males, had shorter disease duration and had more severe genitourinary symptoms. DISCUSSION: Degeneration of nigrostriatal dopaminergic neurons measured using DaTscan imaging can present in patients with PAF without concurrent signs indicating progression to widespread α-synucleinopathy. It is advocated that DaTscan imaging should be considered as part of the workup of patients with emerging autonomic failure who are considered to have PAF.


Assuntos
Doenças do Sistema Nervoso Autônomo , Atrofia de Múltiplos Sistemas , Insuficiência Autonômica Pura , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Insuficiência Autonômica Pura/diagnóstico por imagem , Insuficiência Autonômica Pura/patologia , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/patologia , Proteínas da Membrana Plasmática de Transporte de Dopamina , Imageamento Dopaminérgico , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Biomarcadores , Doenças do Sistema Nervoso Autônomo/diagnóstico por imagem , Doenças do Sistema Nervoso Autônomo/etiologia
11.
Nat Commun ; 14(1): 8458, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38114493

RESUMO

There is extensive synaptic loss from frontotemporal lobar degeneration, in preclinical models and human in vivo and post mortem studies. Understanding the consequences of synaptic loss for network function is important to support translational models and guide future therapeutic strategies. To examine this relationship, we recruited 55 participants with syndromes associated with frontotemporal lobar degeneration and 24 healthy controls. We measured synaptic density with positron emission tomography using the radioligand [11C]UCB-J, which binds to the presynaptic vesicle glycoprotein SV2A, neurite dispersion with diffusion magnetic resonance imaging, and network function with task-free magnetic resonance imaging functional connectivity. Synaptic density and neurite dispersion in patients was associated with reduced connectivity beyond atrophy. Functional connectivity moderated the relationship between synaptic density and clinical severity. Our findings confirm the importance of synaptic loss in frontotemporal lobar degeneration syndromes, and the resulting effect on behaviour as a function of abnormal connectivity.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Degeneração Lobar Frontotemporal/patologia , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética , Síndrome , Tomografia por Emissão de Pósitrons , Encéfalo/patologia
12.
Clin Neurophysiol ; 156: 125-139, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37948946

RESUMO

Cortical myoclonus is thought to result from abnormal electrical discharges arising in the sensorimotor cortex. Given the ease of recording of cortical discharges, electrophysiological features of cortical myoclonus have been better characterized than those of subcortical forms, and electrophysiological criteria for cortical myoclonus have been proposed. These include the presence of giant somatosensory evoked potentials, enhanced long-latency reflexes, electroencephalographic discharges time-locked to individual myoclonic jerks and significant cortico-muscular connectivity. Other features that are assumed to support the cortical origin of myoclonus are short-duration electromyographic bursts, the presence of both positive and negative myoclonus and cranial-caudal progression of the jerks. While these criteria are widely used in clinical practice and research settings, their application can be difficult in practice and, as a result, they are fulfilled only by a minority of patients. In this review we reappraise the evidence that led to the definition of the electrophysiological criteria of cortical myoclonus, highlighting possible methodological incongruencies and misconceptions. We believe that, at present, the diagnostic accuracy of cortical myoclonus can be increased only by combining observations from multiple tests, according to their pathophysiological rationale; nevertheless, larger studies are needed to standardise the methods, to resolve methodological issues, to establish the diagnostic criteria sensitivity and specificity and to develop further methods that might be useful to clarify the pathophysiology of myoclonus.


Assuntos
Mioclonia , Humanos , Mioclonia/diagnóstico , Potenciais Somatossensoriais Evocados/fisiologia , Eletroencefalografia , Reflexo/fisiologia , Neurofisiologia , Eletromiografia
14.
Mov Disord Clin Pract ; 10(9): 1243-1252, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37772299

RESUMO

In patients with movement disorders, voluntary movements can sometimes be accompanied by unintentional muscle contractions in other body regions. In this review, we discuss clinical and pathophysiological aspects of several motor phenomena including mirror movements, dystonic overflow, synkinesia, entrainment and mirror dystonia, focusing on their similarities and differences. These phenomena share some common clinical and pathophysiological features, which often leads to confusion in their definition. However, they differ in several aspects, such as the body part showing the undesired movement, the type of this movement (identical or not to the intentional movement), the underlying neurological condition, and the role of primary motor areas, descending pathways and inhibitory circuits involved, suggesting that these are distinct phenomena. We summarize the main features of these fascinating clinical signs aiming to improve the clinical recognition and standardize the terminology in research studies. We also suggest that the term "mirror dystonia" may be not appropriate to describe this peculiar phenomenon which may be closer to dystonic overflow rather than to the classical mirror movements.

15.
Mov Disord Clin Pract ; 10(9): 1333-1340, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37772292

RESUMO

Background: Neuropathic Tremor (NT) is a postural/kinetic tremor of the upper extremity, often encountered in patients with chronic neuropathies such as paraprotein-associated and hereditary neuropathies. Objectives: To describe the clinical and electrophysiological features of NT in a previously underrecognized setting- during recovery from Guillain-Barré Syndrome (GBS). Methods: Patients with a documented diagnosis of GBS in the past, presenting with tremor were identified from review of clinical records. Participants underwent structured, videotaped neurological examination, and electrophysiological analysis using tri-axial accelerometry-surface electromyography. Tremor severity was assessed using the Fahn-Tolosa-Marin Tremor Rating Scale. Results: We describe the clinical and electrophysiological features of 5 patients with GBS associated NT. Our cohort had a fine, fast, and slightly jerky postural tremor of frequency ranging from 8 to 10 Hz. Dystonic posturing and overflow movements were noted in 4/5 patients. Tremor appeared 3 months-5 years after the onset of GBS, when patients had regained near normal muscle strength and deep tendon jerks were well elicitable. Electrophysiological analysis of tremor strongly suggested the presence of a central oscillator in all patients. Conclusion: NT is not limited to chronic inflammatory or hereditary neuropathies and may occur in the recovery phase of GBS. The tremor is characterized by a high frequency, jerky postural tremor with dystonic posturing. Electrophysiological evaluation suggests the presence of a central oscillator, hypothetically the cerebellum driven by impaired sensorimotor feedback.

16.
Handb Clin Neurol ; 196: 347-365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37620078

RESUMO

Paroxysmal movement disorders have traditionally been classified into paroxysmal dyskinesia (PxD), which consists in attacks of involuntary movements (mainly dystonia and/or chorea) without loss of consciousness, and episodic ataxia (EA), which features spells of cerebellar dysfunction with or without interictal neurological manifestations. In this chapter, PxD will be discussed first according to the trigger-based classification, thus reviewing clinical, genetic, and molecular features of paroxysmal kinesigenic dyskinesia, paroxysmal nonkinesigenic dyskinesia, and paroxysmal exercise-induced dyskinesia. EA will be presented thereafter according to their designated gene or genetic locus. Clinicogenetic similarities among paroxysmal movement disorders have progressively emerged, which are herein highlighted along with growing evidence that their pathomechanisms overlap those of epilepsy and migraine. Advances in our comprehension of the biological pathways underlying paroxysmal movement disorders, which involve ion channels as well as proteins associated with the vesical synaptic cycle or implicated in neuronal energy metabolism, may represent the cornerstone for defining a shared pathophysiologic framework and developing target-specific therapies.


Assuntos
Coreia , Distonia , Distúrbios Distônicos , Transtornos dos Movimentos , Humanos , Coreia/diagnóstico , Coreia/genética , Transtornos dos Movimentos/diagnóstico , Transtornos dos Movimentos/genética
18.
Mov Disord ; 38(7): 1316-1326, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37171832

RESUMO

BACKGROUND: Synaptic loss is characteristic of many neurodegenerative diseases; it occurs early and is strongly related to functional deficits. OBJECTIVE: In this longitudinal observational study, we determine the rate at which synaptic density is reduced in the primary tauopathies of progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), and we test the relationship with disease progression. METHODS: Our cross-sectional cohort included 32 participants with probable PSP and 16 with probable CBD (all amyloid-negative corticobasal syndrome), recruited from tertiary care centers in the United Kingdom, and 33 sex- and age-matched healthy control subjects. Synaptic density was estimated by positron emission tomography imaging with the radioligand [11 C]UCB-J that binds synaptic vesicle 2A. Clinical severity and cognition were assessed by the PSP Rating Scale and the Addenbrooke's cognitive examination. Regional [11 C]UCB-J nondisplaceable binding potential was estimated in Hammersmith Atlas regions of interest. Twenty-two participants with PSP/CBD had a follow-up [11 C]UCB-J positron emission tomography scan after 1 year. We calculated the annualized change in [11 C]UCB-J nondisplaceable binding potential and correlated this with the change in clinical severity. RESULTS: We found significant annual synaptic loss within the frontal lobe (-3.5%, P = 0.03) and the right caudate (-3.9%, P = 0.046). The degree of longitudinal synaptic loss within the frontal lobe correlated with the rate of change in the PSP Rating Scale (R = 0.47, P = 0.03) and cognition (Addenbrooke's Cognitive Examination-Revised, R = -0.62, P = 0.003). CONCLUSIONS: We provide in vivo evidence for rapid progressive synaptic loss, correlating with clinical progression in primary tauopathies. Synaptic loss may be an important therapeutic target and outcome variable for early-phase clinical trials of disease-modifying treatments. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Transtornos dos Movimentos , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Estudos Transversais , Tomografia por Emissão de Pósitrons/métodos , Tauopatias/diagnóstico por imagem , Tauopatias/metabolismo , Paralisia Supranuclear Progressiva/diagnóstico , Transtornos dos Movimentos/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
19.
Aging Cell ; 22(7): e13861, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37129365

RESUMO

Age is a major risk factor for neurodegenerative diseases. Shortening of leucocyte telomeres with advancing age, arguably a measure of "biological" age, is a known phenomenon and epidemiologically correlated with age-related disease. The main mechanism of telomere shortening is cell division, rendering telomere length in post-mitotic cells presumably stable. Longitudinal measurement of human brain telomere length is not feasible, and cross-sectional cortical brain samples so far indicated no attrition with age. Hence, age-related changes in telomere length in the brain and the association between telomere length and neurodegenerative diseases remain unknown. Here, we demonstrate that mean telomere length in the putamen, a part of the basal ganglia, physiologically shortens with age, like leukocyte telomeres. This was achieved by using matched brain and leukocyte-rich spleen samples from 98 post-mortem healthy human donors. Using spleen telomeres as a reference, we further found that mean telomere length was brain region-specific, as telomeres in the putamen were significantly shorter than in the cerebellum. Expression analyses of genes involved in telomere length regulation and oxidative phosphorylation revealed that both region- and age-dependent expression pattern corresponded with region-dependent telomere length dynamics. Collectively, our results indicate that mean telomere length in the human putamen physiologically shortens with advancing age and that both local and temporal gene expression dynamics correlate with this, pointing at a potential mechanism for the selective, age-related vulnerability of the nigro-striatal network.


Assuntos
Putamen , Encurtamento do Telômero , Humanos , Estudos Transversais , Fatores de Risco , Telômero/genética
20.
Mov Disord ; 38(8): 1367-1378, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36989390

RESUMO

This document presents a consensus on the diagnosis and classification of isolated cervical dystonia (iCD) with a review of proposed terminology. The International Parkinson and Movement Disorder Society Dystonia Study Group convened a panel of experts to review the main clinical and diagnostic issues related to iCD and to arrive at a consensus on diagnostic criteria and classification. These criteria are intended for use in clinical research, but also may be used to guide clinical practice. The benchmark is expert clinical observation and evaluation. The criteria aim to systematize the use of terminology as well as the diagnostic process, to make it reproducible across centers and applicable by expert and non-expert clinicians. Although motor abnormalities remain central, increasing recognition has been given to nonmotor manifestations, which are incorporated into the current criteria. Three iCD presentations are described in some detail: idiopathic (focal or segmental) iCD, genetic iCD, and acquired iCD. The relationship between iCD and isolated head tremor is also reviewed. Recognition of idiopathic iCD has two levels of certainty, definite or probable, supported by specific diagnostic criteria. Although a probable diagnosis is appropriate for clinical practice, a higher diagnostic level may be required for specific research studies. The consensus retains elements proven valuable in previous criteria and omits aspects that are no longer justified, thereby encapsulating diagnosis according to current knowledge. As understanding of iCD expands, these criteria will need continuous revision to accommodate new advances. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos , Doença de Parkinson , Torcicolo , Humanos , Doença de Parkinson/diagnóstico , Torcicolo/diagnóstico , Distúrbios Distônicos/genética , Tremor , Consenso , Classificação Internacional de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...