Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 32(8): 703-711, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33625871

RESUMO

The fission yeast cells Schizosaccharomyces pombe divide at constant cell size regulated by environmental stimuli. An important pathway of cell size control involves the membrane-associated DYRK-family kinase Pom1, which forms decreasing concentration gradients from cell poles and inhibits mitotic inducers at midcell. Here, we identify the phosphatase 2C Ptc1 as negative regulator of Pom1. Ptc1 localizes to cell poles in a manner dependent on polarity and cell-wall integrity factors. We show that Ptc1 directly binds Pom1 and can dephosphorylate it in vitro but modulates Pom1 localization indirectly upon growth in low-glucose conditions by influencing microtubule stability. Thus, Ptc1 phosphatase plays both direct and indirect roles in the Pom1 cell size control pathway.


Assuntos
Proteínas Quinases/metabolismo , Proteína Fosfatase 2C/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Polaridade Celular , Tamanho Celular , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose , Fosforilação , Proteínas Quinases/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
2.
Mol Syst Biol ; 11(7): 818, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26150232

RESUMO

Concentration gradients provide spatial information for tissue patterning and cell organization, and their robustness under natural fluctuations is an evolutionary advantage. In rod-shaped Schizosaccharomyces pombe cells, the DYRK-family kinase Pom1 gradients control cell division timing and placement. Upon dephosphorylation by a Tea4-phosphatase complex, Pom1 associates with the plasma membrane at cell poles, where it diffuses and detaches upon auto-phosphorylation. Here, we demonstrate that Pom1 auto-phosphorylates intermolecularly, both in vitro and in vivo, which confers robustness to the gradient. Quantitative imaging reveals this robustness through two system's properties: The Pom1 gradient amplitude is inversely correlated with its decay length and is buffered against fluctuations in Tea4 levels. A theoretical model of Pom1 gradient formation through intermolecular auto-phosphorylation predicts both properties qualitatively and quantitatively. This provides a telling example where gradient robustness through super-linear decay, a principle hypothesized a decade ago, is achieved through autocatalysis. Concentration-dependent autocatalysis may be a widely used simple feedback to buffer biological activities.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Algoritmos , Divisão Celular , Membrana Celular/metabolismo , Fosforilação , Proteínas Quinases/química
3.
J Cell Biol ; 206(1): 61-77, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24982431

RESUMO

Proper division plane positioning is essential to achieve faithful DNA segregation and to control daughter cell size, positioning, or fate within tissues. In Schizosaccharomyces pombe, division plane positioning is controlled positively by export of the division plane positioning factor Mid1/anillin from the nucleus and negatively by the Pom1/DYRK (dual-specificity tyrosine-regulated kinase) gradients emanating from cell tips. Pom1 restricts to the cell middle cortical cytokinetic ring precursor nodes organized by the SAD-like kinase Cdr2 and Mid1/anillin through an unknown mechanism. In this study, we show that Pom1 modulates Cdr2 association with membranes by phosphorylation of a basic region cooperating with the lipid-binding KA-1 domain. Pom1 also inhibits Cdr2 interaction with Mid1, reducing its clustering ability, possibly by down-regulation of Cdr2 kinase activity. We propose that the dual regulation exerted by Pom1 on Cdr2 prevents Cdr2 assembly into stable nodes in the cell tip region where Pom1 concentration is high, which ensures proper positioning of cytokinetic ring precursors at the cell geometrical center and robust and accurate division plane positioning.


Assuntos
Citocinese , Proteínas Quinases/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Segregação de Cromossomos , Cromossomos Fúngicos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Fosforilação , Ligação Proteica , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Transporte Proteico , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química
4.
Cell Cycle ; 13(4): 538-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24316795

RESUMO

Where and when cells divide are fundamental questions. In rod-shaped fission yeast cells, the DYRK-family kinase Pom1 is organized in concentration gradients from cell poles and controls cell division timing and positioning. Pom1 gradients restrict to mid-cell the SAD-like kinase Cdr2, which recruits Mid1/Anillin for medial division. Pom1 also delays mitotic commitment through Cdr2, which inhibits Wee1. Here, we describe quantitatively the distributions of cortical Pom1 and Cdr2. These reveal low profile overlap contrasting with previous whole-cell measurements and Cdr2 levels increase with cell elongation, raising the possibility that Pom1 regulates mitotic commitment by controlling Cdr2 medial levels. However, we show that distinct thresholds of Pom1 activity define the timing and positioning of division. Three conditions-a separation-of-function Pom1 allele, partial downregulation of Pom1 activity, and haploinsufficiency in diploid cells-yield cells that divide early, similar to pom1 deletion, but medially, like wild-type cells. In these cells, Cdr2 is localized correctly at mid-cell. Further, Cdr2 overexpression promotes precocious mitosis only in absence of Pom1. Thus, Pom1 inhibits Cdr2 for mitotic commitment independently of regulating its localization or cortical levels. Indeed, we show Pom1 restricts Cdr2 activity through phosphorylation of a C-terminal self-inhibitory tail. In summary, our results demonstrate that distinct levels in Pom1 gradients delineate a medial Cdr2 domain, for cell division placement, and control its activity, for mitotic commitment.


Assuntos
Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Ciclo Celular , Divisão Celular , Tamanho Celular , Mitose , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
5.
J Indian Med Assoc ; 109(11): 826-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22666940

RESUMO

The mushrooms are probably one of the oldest consumption of mankind having mythological and spiritual significance apart from being a great delicacy. Its poisoning is a common yet poorly recognised. There are more than 2000 varieties which are edible, and nearly 80 varieties are non-edible (or poisonous) type. Not only they resemble some of the edible types, they even grow long with them. Most of the toxic events go unnoticed, yet, sometimes it may be life threatening as some mushrooms are one of the most toxic fungi known to manking. Awareness is pobably the only prevention.


Assuntos
Agaricales , Intoxicação Alimentar por Cogumelos/diagnóstico , Intoxicação Alimentar por Cogumelos/terapia , Humanos , Intoxicação Alimentar por Cogumelos/fisiopatologia
6.
Cell Cycle ; 9(22): 4592-9, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21099343

RESUMO

We have previously shown that the DNA damage-induced G2 arrest is contributed by inhibition of Aurora A (AurA) and that transduction of active AurA into arrested cells allows bypassing the block through reactivation of CDK1. In this study, we investigated the mechanism of DNA damage-induced AurA inhibition. We provide evidence that ionizing radiation (IR) administered in mitosis, a time when AurA protein and enzymatic activity reach peak levels, impairs interaction with the partner TPX2, leading to inactivation of the kinase through dephosphorylation of AurA T-loop residue, T288. We find that decreased AurA-TPX2 complex formation in response to irradiation results from reduced cellular levels of TPX2, an effect that is both contributed by increased APC/CDH1-dependent protein degradation and decreased translation of TPX2 mRNA.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/efeitos da radiação , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Aurora Quinases , Proteínas de Ciclo Celular/genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Nucleares/genética , RNA Mensageiro/metabolismo , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...