Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
2.
J Cyst Fibros ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38388235

RESUMO

BACKGROUND: In 2017, the US Food and Drug Administration initiated expansion of drug labels for the treatment of cystic fibrosis (CF) to include CF transmembrane conductance regulator (CFTR) gene variants based on in vitro functional studies. This study aims to identify CFTR variants that result in increased chloride (Cl-) transport function by the CFTR protein after treatment with the CFTR modulator combination elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA). These data may benefit people with CF (pwCF) who are not currently eligible for modulator therapies. METHODS: Plasmid DNA encoding 655 CFTR variants and wild-type (WT) CFTR were transfected into Fisher Rat Thyroid cells that do not natively express CFTR. After 24 h of incubation with control or TEZ and ELX, and acute addition of IVA, CFTR function was assessed using the transepithelial current clamp conductance assay. Each variant's forskolin/cAMP-induced baseline Cl- transport activity, responsiveness to IVA alone, and responsiveness to the TEZ/ELX/IVA combination were measured in three different laboratories. Western blots were conducted to evaluate CFTR protein maturation and complement the functional data. RESULTS AND CONCLUSIONS: 253 variants not currently approved for CFTR modulator therapy showed low baseline activity (<10 % of normal CFTR Cl- transport activity). For 152 of these variants, treatment with ELX/TEZ/IVA improved the Cl- transport activity by ≥10 % of normal CFTR function, which is suggestive of clinical benefit. ELX/TEZ/IVA increased CFTR function by ≥10 percentage points for an additional 140 unapproved variants with ≥10 % but <50 % of normal CFTR function at baseline. These findings significantly expand the number of rare CFTR variants for which ELX/TEZ/IVA treatment should result in clinical benefit.

3.
Mol Cell Biochem ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787834

RESUMO

The use of nanoparticles (NPs) has emerged as a potential tool for safe and effective drug delivery. In the present study, we developed small molecule P7C3-based NPs and tested its efficacy and toxicity along with the tissue specific aptamer-modified P7C3 NPs. The P7C3 NPs were prepared using poly (D, L-lactic-co-glycolic acid) carboxylic acid (PLGA-COOH) polymer, were conjugated with skeletal muscle-specific RNA aptamer (A01B P7C3 NPs) and characterized for its cytotoxicity, cellular uptake, and wound healing in vitro. The A01B P7C3 NPs demonstrated an encapsulation efficiency of 30.2 ± 2.6%, with the particle size 255.9 ± 4.3 nm, polydispersity index of 0.335 ± 0.05 and zeta potential of + 10.4 ± 1.8mV. The FTIR spectrum of P7C3 NPs displayed complete encapsulation of the drug in the NPs. The P7C3 NPs and A01B P7C3 NPs displayed sustained drug release in vitro for up to 6 days and qPCR analysis confirmed A01B aptamer binding to P7C3 NPs. The C2C12 cells viability assay displayed no cytotoxic effects of all 3 formulations at 48 and 72 h. In addition, the cellular uptake of A01B P7C3 NPs in C2C12 myoblasts demonstrated higher uptake. In vitro assay mimicking wound healing showed improved wound closure with P7C3 NPs. In addition, P7C3 NPs significantly decreased TNF-α induced NF-κB activity in the C2C12/NF-κB reporter cells after 24-hour treatment. The P7C3 NPs showed 3-4-fold higher efficacy compared to P7C3 solutions in both wound-closure and inflammation assays in C2C12 cells. Furthermore, the P7C3 NPs showed 3-4-fold higher efficacy in reducing the infarct size and protected mouse hearts from ex vivo ischemia-reperfusion injury. Overall, this study demonstrates the safe and effective delivery of P7C3 NPs.

4.
Assay Drug Dev Technol ; 20(4): 164-174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617693

RESUMO

Raloxifene (RLX), a biopharmaceutical classification system (BCS) class II drug, is a selective estrogen receptor modulator (SERM) having an estrogenic effect on the bone and an antiestrogenic effect on the endometrium and breast. Low solubility, high permeability, high metabolism, and low bioavailability are the characteristics of raloxifene. Although 60% is absorbed orally, raloxifene shows extremely poor bioavailability (2%) owing to its low solubility and extensive (>90%) intestinal/hepatic first-pass metabolism. Hence, it becomes important to increase the solubility of raloxifene to enhance its bioavailability. In this study, raloxifene nanostructured lipid carriers (RNLCs) were prepared using the melt dispersion ultrasonication method. The prepared RNLCs were characterized, and the in vitro studies were carried out in the human epithelial breast cancer cell line (MCF-7). The RNLCs had a size of 114.8 ± 0.98 nm and a zeta potential of +9.21 ± 0.58 mV. Transmission electron microscopy (TEM) images showed particle size ranging from 65 to 120 nm. With an entrapment efficiency of 75.04% ± 2.75%, the RNLCs showed sustained release over 7 days compared with the raloxifene drug solution. The prepared RNLCs were successfully taken up by the MCF-7 cells in a time-dependent manner, and the RNLCs showed increased cell cytotoxicity compared with the raloxifene drug. Using the parallel artificial membrane permeability assay (PAMPA), the permeability rate for raloxifene solution was calculated to be 8 × 10-6 cm/s, and for the RNLCs, it was calculated to be 17.8 × 10-6 cm/s. Hence, from the permeability rate calculated, we could conclude that raloxifene, when formulated as nanostructured lipid carriers, showed increased permeability. Overall, the prepared RNLCs were found to be superior to the raloxifene drug as such.


Assuntos
Lipídeos , Cloridrato de Raloxifeno , Animais , Feminino , Humanos , Permeabilidade , Cloridrato de Raloxifeno/farmacologia , Ratos , Ratos Wistar , Solubilidade
5.
Assay Drug Dev Technol ; 19(6): 350-360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34227879

RESUMO

Age-related macular degeneration (AMD), a multifactorial age-related retinal hypoxic disorder resulting in irreversible loss of vision, is the foremost cause of blindness in the United States. Current treatment strategies involve multiple intraocular injections of antivascular endothelial growth factor (VEGF) agents into the vitreous of eye. In addition to the challenges of drug localization and targeted delivery, the need of frequent injections into the eye raises patient compliance issues, and thus call for development of sustained drug delivery systems. In this study, a sustained drug delivery system was prepared by loading an antihypoxia-induced factor (HIF) agent, honokiol (HON), into methoxy poly (ethylene glycol) polycaprolactone (MPEG-PCL) polymer. These HON-MPEG-PCL micelles were characterized by evaluating size, ζ potential, in vitro drug release profile, and morphology by transmission electron microscopy. The cytotoxic nature of developed micelles was assessed on human retinal pigment epithelial cell line (ARPE-19) cells by cytotoxicity assay. The cellular uptake and HIF and VEGF expression levels were determined in in vitro settings. Micelles formed had a particle size of 30.8 ± 0.8 nm with the poly dispersity index of 0.19 ± 0.0004 and ζ potential was found to be -5.46 ± 0.49 mv. Entrapment efficiency was calculated to be 64 ± 0.135%. In vitro drug release showed sustained release of drug from the formulation. Result from in vitro cytotoxicity study confirmed noncytotoxic nature of HON-MPEG-PCL micelles compared to HON drug solution. Furthermore, enzyme-linked immunosorbent assay studies performed showed the periodic downregulation of HIF and VEGF, which are major growth factors involved in underlying mechanism of AMD. The results showed successful development of HON-MPEG-PCL micelles, which may be useful for the effective treatment of AMD.


Assuntos
Degeneração Macular , Micelas , Compostos de Bifenilo , Humanos , Lignanas , Degeneração Macular/tratamento farmacológico , Poliésteres
6.
Nat Med ; 27(5): 806-814, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33958799

RESUMO

Cystic fibrosis (CF) is a lethal autosomal recessive disorder that afflicts more than 70,000 people. People with CF experience multi-organ dysfunction resulting from aberrant electrolyte transport across polarized epithelia due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF-related lung disease is by far the most important determinant of morbidity and mortality. Here we report results from a multi-institute consortium in which single-cell transcriptomics were applied to define disease-related changes by comparing the proximal airway of CF donors (n = 19) undergoing transplantation for end-stage lung disease with that of previously healthy lung donors (n = 19). Disease-dependent differences observed include an overabundance of epithelial cells transitioning to specialized ciliated and secretory cell subsets coupled with an unexpected decrease in cycling basal cells. Our study yields a molecular atlas of the proximal airway epithelium that will provide insights for the development of new targeted therapies for CF airway disease.


Assuntos
Fibrose Cística/genética , Fibrose Cística/patologia , Células Epiteliais/citologia , Pulmão/patologia , Mucosa Respiratória/patologia , Diferenciação Celular/genética , Cílios/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Humanos , Análise de Célula Única/métodos , Transcriptoma/genética
7.
AAPS PharmSciTech ; 21(8): 291, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33085055

RESUMO

Age-related macular degeneration, precisely neovascular form, is the leading cause of vision loss and the key treatment includes intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) agents. A method to increase local concentration of drug at posterior segment of the eye and to reduce the frequency of intravitreal injections is an unmet need. Resveratrol, a naturally occurring antioxidant and anti-inflammatory polyphenol, was loaded in PLGA polymeric nanoparticles to study their sustained release property and effectiveness in reducing expression of VEGF protein in vitro. Nanoparticles were characterized using FTIR, DSC, size, encapsulation efficiency, TEM, and in vitro drug release studies. Using MTT assay, the cytotoxicity of formulation was evaluated on ARPE-19 cells. The cellular uptake and VEGF expression levels were also evaluated in in vitro settings. The optimized formulation had a particle size of 102.7 nm with - 47.30 mV of zeta potential. Entrapment efficiency was found to be 65.21%. The cell viability results suggested compatibility of developed formulation. Cellular uptake and VEGF expression levels for the formulated nanoparticles specified that the developed formulation showed potential cellular uptake and had displayed anti-angiogenic property by inhibiting VEGF expression in vitro. The results showed successful development of resveratrol-loaded nanoparticles which may be used for neovascular AMD treatment alone or in combination with anti-VEGF agents.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Antioxidantes/administração & dosagem , Nanopartículas , Resveratrol/administração & dosagem , Degeneração Macular Exsudativa/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Injeções Intravítreas , Polímeros/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Acuidade Visual
8.
BMC Neurol ; 19(1): 326, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842821

RESUMO

BACKGROUND: Mild Cognitive Impairment (MCI) carries a high risk of progression to Alzheimer's disease (AD) dementia. Previous clinical trials testing whether cholinesterase inhibitors can slow the rate of progression from MCI to AD dementia have yielded disappointing results. However, recent studies of the effects of repetitive transcranial magnetic stimulation (rTMS) in AD have demonstrated improvements in cognitive function. Because few rTMS trials have been conducted in MCI, we designed a trial to test the short-term efficacy of rTMS in MCI. Yet, in both MCI and AD, we know little about what site of stimulation would be ideal for improving cognitive function. Therefore, two cortical sites will be investigated in this trial: (1) the dorsolateral prefrontal cortex (DLPFC), which has been well studied for treatment of major depressive disorder; and (2) the lateral parietal cortex (LPC), a novel site with connectivity to AD-relevant limbic regions. METHODS/DESIGN: In this single-site trial, we plan to enroll 99 participants with single or multi-domain amnestic MCI. We will randomize participants to one of three groups: (1) Active DLPFC rTMS; (2) Active LPC rTMS; and (3) Sham rTMS (evenly split between DLPFC and LPC locations). After completing 20 bilateral rTMS treatment sessions, participants will be followed for 6 months to test short-term efficacy and track durability of effects. The primary efficacy measure is the California Verbal Learning Test-II (CVLT-II), assessed 1 week after intervention. Secondary analyses will examine effects of rTMS on other cognitive measures, symptoms of depression, and brain function with respect to the site of stimulation. Finally, selected biomarkers will be analyzed to explore predictors of response and mechanisms of action. DISCUSSION: The primary aim of this trial is to test the short-term efficacy of rTMS in MCI. Additionally, the project will provide information on the durability of cognitive effects and potentially distinct effects of stimulating DLPFC versus LPC regions. Future efforts would be directed toward better understanding therapeutic mechanisms and optimizing rTMS for treatment of MCI. Ultimately, if rTMS can be utilized to slow the rate of progression to AD dementia, this will be a significant advancement in the field. TRIAL REGISTRATION: Clinical Trials NCT03331796. Registered 6 November 2017, https://clinicaltrials.gov/ct2/show/NCT03331796. All items from the World Health Organization Trial Registration Data Set are listed in Appendix A. PROTOCOL VERSION: This report is based on version 1, approved by the DSMB on 30 November, 2017 and amended on 14 August, 2018 and 19 September, 2019.


Assuntos
Disfunção Cognitiva/terapia , Lobo Parietal , Córtex Pré-Frontal , Projetos de Pesquisa , Estimulação Magnética Transcraniana/métodos , Idoso , Feminino , Humanos , Masculino
9.
Ther Deliv ; 10(11): 737-747, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718481

RESUMO

Pathologic posterior neovascularization of eye is a major cause of irreversible vision loss and limitations of therapeutics to be successfully delivered to back of the eye has been a main obstacle for its effective treatment. Current pharmacological treatment using anti-VEGF agents being delivered intravitreally are effective but complicated due to anatomical and physiological barriers, as well as administration of high and frequent doses. With expanding horizons of nanotechnology, it can be possible to formulate promising nanoscale delivery system to improve penetration and sustained the release of therapeutic in posterior segment of the eye. Taking into consideration advances in the field of nanoscale delivery systems, this special report focuses on emerging strategies and their applications for treatment of posterior ocular neovascularization.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Portadores de Fármacos/química , Nanopartículas/química , Neovascularização Retiniana/terapia , Adenoviridae/genética , Administração Oftálmica , Inibidores da Angiogênese/farmacocinética , Animais , Cegueira/etiologia , Cegueira/prevenção & controle , Barreira Hematoaquosa/metabolismo , Barreira Hematorretiniana/metabolismo , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Terapia a Laser/métodos , Absorção Ocular , Permeabilidade , Fotoquimioterapia , Retina/metabolismo , Neovascularização Retiniana/complicações , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Baixa Visão/etiologia , Baixa Visão/prevenção & controle , Vitrectomia
10.
AAPS PharmSciTech ; 20(7): 281, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399890

RESUMO

Anti-vascular endothelial growth factor agents have been widely used to treat several eye diseases including age-related macular degeneration (AMD). An approach to maximize the local concentration of drug at the target site and minimize systemic exposure is to be sought. Sunitinib malate, a multiple receptor tyrosine kinase inhibitor was encapsulated in poly(lactic-co-glycolic acid) nanoparticles to impart sustained release. The residence time in vitreal fluid was further increased by incorporating nanoparticles in thermo-reversible gel. Nanoparticles were characterized using TEM, DSC, FTIR, and in vitro drug release profile. The cytotoxicity of the formulation was assessed on ARPE-19 cells using the MTT assay. The cellular uptake, wound scratch assay, and VEGF expression levels were determined in in vitro settings. The optimized formulation had a particle size of 164.5 nm and zeta potential of - 18.27 mV. The entrapment efficiency of 72.0% ± 3.5% and percent drug loading of 9.1 ± 0.7% were achieved. The viability of ARPE-19 cells was greater than 90% for gel loaded, as such and blank nanoparticles at 10 µM and 20 µM concentration tested, whereas for drug solution viability was found to be 83% and 71% respectively at above concentration. The cell viability results suggest the compatibility of the developed formulation. Evaluation of cellular uptake, wound scratch assay, and VEGF expression levels for the developed formulations indicated that the formulation had higher uptake, superior anti-angiogenic potential, and prolonged inhibition of VEGF activity compared with drug solution. The results showed successful development of sunitinib-loaded nanoparticle-based thermo-reversible gel which may be used for the treatment of neovascular AMD.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Nanopartículas/uso terapêutico , Sunitinibe/uso terapêutico , Degeneração Macular Exsudativa/tratamento farmacológico , Inibidores da Angiogênese/administração & dosagem , Humanos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Sunitinibe/administração & dosagem , Acuidade Visual
11.
Assay Drug Dev Technol ; 17(4): 167-177, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31184962

RESUMO

Despite all the research aiming to treat ocular diseases, age-related macular degeneration (AMD) remains one of the serious diseases worldwide, which needs to be treated. Neovascularization is a key factor in AMD and thus antiangiogenic therapy is beneficial in reducing the development of new abnormal blood vessels. Axitinib, multireceptor tyrosine kinase inhibitor, is a small molecule that works by blocking vascular endothelial growth factor receptors (VEGFR) and platelet-derived growth factor receptors (PDGFR) responsible for developing neovascularization. The goal of this study is to develop a sustained release formulation of axitinib-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles to minimize frequent administration of the drug by intravitreal injection. The nanoparticles were characterized for particle size and zeta potential, as well as using differential scanning calorimetry, transmission electrode microscope, and in vitro drug release profile. The cytotoxicity of the formulation was evaluated on human retinal pigmented epithelium ARPE19 cells by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide salt] assay. The cellular uptake, antimigration assay, and vascular endothelial growth factor (VEGF) expression levels were found out in vitro using cells. The optimized formulation was 131.33 ± 31.20 nm in size with -4.63 ± 0.76 mV zeta potential. Entrapment efficiency was found to be 87.9% ± 2.7%. The cytotoxicity of ARPE19 cells was <12% for nanoparticles suggesting the in vitro compatibility at 10 µM concentration of drug. Cellular uptake, antimigration assay, and VEGF expression levels for the nanoparticles suggested greater uptake, significant antiangiogenic potential, and inhibition of VEGF activity. The results showed successful development of axitinib-loaded PLGA nanoparticles as an alternative potential treatment for AMD.


Assuntos
Axitinibe/administração & dosagem , Axitinibe/farmacologia , Degeneração Macular/tratamento farmacológico , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Axitinibe/síntese química , Axitinibe/química , Varredura Diferencial de Calorimetria , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Composição de Medicamentos , Humanos , Degeneração Macular/patologia , Estrutura Molecular , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície , Cicatrização/efeitos dos fármacos
12.
Int J Pharm ; 563: 324-336, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30954673

RESUMO

Rational design of novel ionizable lipids for development of lipid-nucleic acid nanoparticles (LNP) is required for safe and effective systemic gene delivery for osteoporosis. LNPs require suitable characteristics for intravenous administration and effective accumulation in bone marrow for enhanced transfection. Hence, lipids with C18 tail and ionizable headgroup (Boc-His-ODA/BHODA and His-ODA/HODA) were synthesized and characterized physicochemically. LNPs were prepared with bone morphogenetic protein-9 gene (BHODA-LNP, HODA-LNP, and bone-homing peptide targeted HODA-LNP - HODA-LNPT). Thorough physicochemical (electrolyte stability, DNase I and serum stability) and biological (hemolysis, ROS induction, cytotoxicity and transfection) characterization was carried out followed by acute toxicity studies and therapeutic performance studies in ovariectomized rat model. Lipids with pH dependent ionization were successfully synthesized. LNPs thereof were ∼100 nm size with stability against electrolytes, DNase I and serum and exhibited low hemolytic potential demonstrating suitability for intravenous administration. LNPs exhibited minimal cytotoxicity, non-significant ROS induction and high transfection. In vivo studies demonstrated safety and improved bone regeneration in OVX rats with HODA-LNPT showing significantly better performance. Synthesized ionizable lipids offer safe and effective alternative for preparation of LNPs for gene delivery. Targeted BMP-9 LNP show potential for systemic osteoporosis treatment.


Assuntos
DNA/administração & dosagem , Técnicas de Transferência de Genes , Fatores de Diferenciação de Crescimento/genética , Lipídeos/administração & dosagem , Nanopartículas/administração & dosagem , Osteogênese , Animais , Células da Medula Óssea/citologia , Linhagem Celular , Eritrócitos/fisiologia , Feminino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Osteoporose/terapia , Ovariectomia , Plasmídeos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
13.
AAPS PharmSciTech ; 20(2): 50, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30617637

RESUMO

Gene therapy involving p11 cDNA has been thought to be a futuristic approach for the effective management of depression as the existing treatment regimen presents many issues regarding late onset of action, patient withdrawal and their side effects. For the effective transfection of p11 gene intracellularly, two cationic lipids based on phospholipid DOPE conjugated to basic amino acids histidine and arginine were synthesised, used for liposome formulation and evaluated for their ability as gene delivery vectors. They were further converted using IGF-II mAb into immunoliposomes for CNS targeting and mAb conjugation to liposomes were characterised by SDS-PAGE. They were further analysed by in vitro characterisation studies that include erythrocyte aggregation study, electrolyte-induced study, heparin compatibility study and serum stability studies. SHSY5Y cells were used for conducting cytotoxicity of synthesised lipids and live imaging of cell uptake for 25 min. Finally, the brain distribution studies and western blot were carried out in animals to evaluate them for their BBB permeation ability and effects on p11 protein which is believed to be a culprit. These formulated liposomes from synthesised lipids offer a promising approach for the treatment of depression.


Assuntos
Encéfalo/metabolismo , Peptídeos Penetradores de Células/genética , Depressão/genética , Terapia Genética/métodos , Fator de Crescimento Insulin-Like II/genética , Nanopartículas/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/metabolismo , Depressão/metabolismo , Depressão/terapia , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Humanos , Fator de Crescimento Insulin-Like II/administração & dosagem , Fator de Crescimento Insulin-Like II/metabolismo , Lipossomos/química , Masculino , Camundongos , Nanopartículas/administração & dosagem , Ratos , Ratos Sprague-Dawley
14.
AAPS PharmSciTech ; 19(8): 3550-3560, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30187446

RESUMO

The biocompatibility of cationic liposomes has led to their clinical translation in gene delivery and their application apart from cancer to cardiovascular diseases, osteoporosis, metabolic diseases, and more. We have prepared PEGylated stearyl amine (pegSA) lipoplexes meticulously considering the physicochemical properties and formulation parameters to prepare single unilamellar vesicles (SUV) of < 100 nm size which retain their SUV nature upon complexation with pDNA rather than the conventional lipoplexes which show multilamellar nature. The developed PEGylated SA lipoplexes (pegSA lipoplexes) showed a lower N/P ratio (1.5) for BMP-9 gene complexation while maintaining the SUV character with a unique shape (square and triangular lipoplexes). Colloidal and pDNA complexation stability in the presence of electrolytes and serum indicates the suitability for intravenous administration for delivery of lipoplexes to bone marrow mesenchymal stem cells through sinusoidal vessels in bone marrow. Moreover, lower charge density of lipoplexes and low oxidative stress led to lower toxicity of lipoplexes to the C2C12 cells, NIH 3T3 cells, and erythrocytes. Transfection studies showed efficient gene delivery to C2C12 cells inducing osteogenic differentiation through BMP-9 expression as shown by enhanced calcium deposition in vitro, proving the potential of lipoplexes for bone regeneration. In vivo acute toxicity studies further demonstrated safety of the developed lipoplexes. Developed pegSA lipoplexes show potential for further in vivo preclinical evaluation to establish the proof of concept.


Assuntos
Aminas/química , Técnicas de Transferência de Genes , Fator 2 de Diferenciação de Crescimento/genética , Lipossomos/química , Osteogênese , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Coloides/química , Humanos , Camundongos
15.
Mol Divers ; 22(4): 827-840, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29948580

RESUMO

A series of novel analogues based on a diazole-imide pharmacophore were synthesized by diazotizing substituted 1,3,4-thia-/oxadiazol-2-amines and subsequently coupling the resulting diazonium salts with N-substituted cyclic imides. The resulting compounds C1 to C28 were characterized by various spectral methods, viz. IR, NMR and mass spectroscopy. All the synthesized compounds were tested against two human cancer cell lines: human breast adenocarcinoma cell line MCF-7 and colorectal adenocarcinoma cell line HT-29. Among the synthesized compounds, C14 (2-(4-chloro-3-((5-(4-nitrophenyl)-1,3,4-thiadiazol-2-yl)diazenyl)phenyl)-4,5,6,7-tetrahydro-1H-isoindole-1,3(2H)-dione) emerged as a potential candidate against both MCF-7 and HT-29 with [Formula: see text] values of 0.09 ± 0.02 [Formula: see text]M and 0.11 ± 0.03 [Formula: see text]M, respectively. Similarly, compound C16 displayed highest anticancer activity against MCF-7 cell line with [Formula: see text] = 0.07 ± 0.02 [Formula: see text]M. Target fishing (inverse docking) using ChemMapper server identified EGFR tyrosine and CDK2 kinases as high priority targets for this pharmacophore. Computational docking (AutoDock 4.2) was used to analyse the interactions between the target proteins and active compounds.


Assuntos
Compostos Azo/química , Imidas/química , Simulação de Acoplamento Molecular , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Tiazóis/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Humanos , Células MCF-7 , Oxidiazóis/química , Oxidiazóis/metabolismo , Conformação Proteica , Relação Estrutura-Atividade
16.
Ther Deliv ; 9(5): 375-386, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29681237

RESUMO

The management of wounds and burns is becoming difficult using conventional therapeutics available due to resistance development by microbes. Therefore, there is an utmost need to develop therapeutic alternatives to these agents. Antimicrobial peptides have emerged as a novel class of agents for the effective management of wounds and burns due to their potent nature along with minimal chances of resistance development against them. This article focuses on highlighting the importance of these antimicrobial peptides among the various therapeutic alternatives for burns and wounds. Further, effective delivery strategies for these agents that are being employed and investigated are reported along with an overview of the importance of these agents in the coming years.


Assuntos
Anti-Infecciosos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Queimaduras/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Infecção dos Ferimentos/tratamento farmacológico , Administração Cutânea , Animais , Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Queimaduras/epidemiologia , Queimaduras/microbiologia , Queimaduras/patologia , Humanos , Pele/microbiologia , Pele/patologia , Infecção dos Ferimentos/epidemiologia , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologia
17.
J Microencapsul ; 35(2): 204-217, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29542378

RESUMO

The aim of this study was to develop anti-EGFR antibody conjugated poly(lactide-co-glycolide) nanoparticles (NPs) to target epidermal growth factor receptor, highly expressed on non-small cell lung cancer cells to improve cytotoxicity and site specificity. Cetuximab was conjugated to docetaxel (DTX) loaded PLGA NPs by known EDC/NHS chemistry and characterised for size, zeta potential, conjugation efficiency and the results were 128.4 ± 3.6 nm, -31.0 ± 0.8 mV, and 39.77 ± 3.4%, respectively. In vitro release study demonstrated sustained release of drug from NPs with 25% release at pH 5.5 after 48 h. In vitro cytotoxicity studies demonstrated higher anti-proliferative activity of NPs than unconjugated NPs. Cell cycle analysis and apoptosis study were performed to evaluate extent of cell arrest at different phases and apoptotic potential for the formulations, respectively. In vivo efficacy study showed significant reduction in tumour growth and so antibody conjugated NPs present a promising active targeting carrier for tumour selective therapeutic treatment.


Assuntos
Antineoplásicos/administração & dosagem , Cetuximab/administração & dosagem , Portadores de Fármacos/química , Receptores ErbB/metabolismo , Imunoconjugados/administração & dosagem , Ácido Láctico/química , Neoplasias Pulmonares/tratamento farmacológico , Ácido Poliglicólico/química , Taxoides/administração & dosagem , Células A549 , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Cetuximab/farmacocinética , Cetuximab/uso terapêutico , Docetaxel , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/uso terapêutico , Neoplasias Pulmonares/metabolismo , Camundongos SCID , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Taxoides/farmacocinética , Taxoides/uso terapêutico
18.
RSC Adv ; 8(62): 35461-35473, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35547911

RESUMO

Linear polyethylenimine (LPEI) has been well reported as a carrier for siRNA delivery. However, its applications are limited due to its highly ionized state at physiologic pH and the resultant charge mediated toxicity. The presence of ionizable secondary amines in LPE are responsible for its unique characteristics such as pH dependent solubility and positive charge. Therefore, modification of LPEI was carried out to obtain hydroxyethyl substituted LPEI with the degree of substitution ranging from 15% to 45%. The impact of modification on the physicochemical parameters of the polymer, i.e. buffer capacity, solubility, biocompatibility and stability, was evaluated. Surprisingly, despite the loss of ionizable amines, the substitution improved solubility, and even overcame the pH dependent solubility of LPEI. In addition, the conversion of secondary amines to less basic tertiary amines after substitution improved the buffer capacity, in the endosomal pH range, required for efficient endosomal escape. It also reduced erythrocyte aggregation, hemolytic potential and in vitro cytotoxicity. The in vitro studies showed enhanced cell uptake and mRNA knockdown efficiency. Thus, the proposed modification shows a simple approach to overcome the limitation of LPEI for siRNA delivery.

19.
Int J Pharm ; 536(1): 95-107, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29175440

RESUMO

Combination strategy involving cyclodextrin (CD) complexation and liposomal system was investigated for Paclitaxel (PTX) to improve loading. Complexation was done using 2,6-di-O-methylbetacyclodextrin (DMßCD). Sterically stabilized double loaded PEGylated liposomes (DLPLs) containing PTX and PTX-DMßCD complex were prepared by thin film hydration. Physicochemical characterization of complex and prepared DLPLs was carried out. Cytotoxic potential, hemolytic potential and pharmacokinetics of DLPLs were tested in comparison to Taxol®. Aqueous solubility of PTX increased by almost 3 × 104 folds due to complexation with DMßCD as compared to pure drug solubility. Liposomal system was found to have 162.8 ± 4.1 nm size, zeta potential of -5.6 ± 0.14 mV and 2-fold increase in drug loading to 5.8 mol % for PTX due to double loading. DLPLs had low hemolytic potential and higher cytotoxicity on SKOV3 cells with improvement in IC50 value by 4.2 folds as compared to Taxol® at 48 h. The anti-angiogenic potential of DLPLs was confirmed by 1.33 folds lesser wound recovery in SKOV3 cells compared to Taxol®. In-vivo pharmacokinetic evaluation of DLPLs in rats substantiates improvement in circulation time, higher plasma concentration and decreased clearance rate compared to Taxol®. An efficacious system with improved loading and pharmacokinetics was formulated as potential alternative for currently marketed PTX formulation.


Assuntos
Ciclodextrinas/química , Lipossomos/química , Paclitaxel/química , Paclitaxel/farmacocinética , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacocinética , Animais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacocinética , Linhagem Celular Tumoral , Portadores de Fármacos/química , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley
20.
Artigo em Inglês | MEDLINE | ID: mdl-28342426

RESUMO

Owing to their easy accessibility and high degree of structural and functional diversity, many multicomponent reactions (MCRs) have been a rich source of conjugate π-systems, functionalised chromophores (or fluorophore) and redox active molecules. Despite their high explorative potential and practical benefits, only a few MCR products have been so far investigated for their metal sensing abilities. In the present report, two furopyrimidinones (FPys) based molecular systems have been synthesized by [4+1] cycloaddition based MCR sequence. Designed chemosensors displayed optic (absorption spectra) as well as electroanalytical (ion selective electrode) response toward Cu2+ ion in solution and membrane phase respectively (dual channel sensing). Different aspects of both the sensing phenomena such as selectivity, association constants, detection limit, membrane composition etc. were studied in detail using UV-Vis spectroscopy, NMR titration and cell assembly. Both the compounds showed excellent performance characteristics such as high selectivity, acceptable affinity and low detection limits (10-7M) in both sensing assays with potential utility in the area of sample monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...