Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349720

RESUMO

Dedicated genetic pathways regulate cysteine homeostasis. For example, high levels of cysteine activate cysteine dioxygenase, a key enzyme in cysteine catabolism in most animal and many fungal species. The mechanism by which cysteine dioxygenase is regulated is largely unknown. In an unbiased genetic screen for mutations that activate cysteine dioxygenase (cdo-1) in the nematode Caenorhabditis elegans, we isolated loss-of-function mutations in rhy-1 and egl-9, which encode proteins that negatively regulate the stability or activity of the oxygen-sensing hypoxia inducible transcription factor (hif-1). EGL-9 and HIF-1 are core members of the conserved eukaryotic hypoxia response. However, we demonstrate that the mechanism of HIF-1-mediated induction of cdo-1 is largely independent of EGL-9 prolyl hydroxylase activity and the von Hippel-Lindau E3 ubiquitin ligase, the classical hypoxia signaling pathway components. We demonstrate that C. elegans cdo-1 is transcriptionally activated by high levels of cysteine and hif-1. hif-1-dependent activation of cdo-1 occurs downstream of an H2S-sensing pathway that includes rhy-1, cysl-1, and egl-9. cdo-1 transcription is primarily activated in the hypodermis where it is also sufficient to drive sulfur amino acid metabolism. Thus, the regulation of cdo-1 by hif-1 reveals a negative feedback loop that maintains cysteine homeostasis. High levels of cysteine stimulate the production of an H2S signal. H2S then acts through the rhy-1/cysl-1/egl-9 signaling pathway to increase HIF-1-mediated transcription of cdo-1, promoting degradation of cysteine via CDO-1.


Proteins are large molecules in our cells that perform various roles, from acting as channels through which nutrients can enter the cell, to forming structural assemblies that help the cell keep its shape. Proteins are formed of chains of building blocks called amino acids. There are 20 common amino acids, each with a different 'side chain' that confers it with specific features. Cysteine is one of these 20 amino acids. Its side chain has a 'thiol' group, made up of a sulfur atom and a hydrogen atom. This thiol group is very reactive, and it is an essential building block of enzymes (proteins that speed up chemical reactions within the cell), structural proteins and signaling molecules. While cysteine is an essential amino acid for the cell to function, excess cysteine can be toxic. The concentration of cysteine in animal cells is tightly regulated by an enzyme called cysteine dioxygenase. This enzyme is implicated in two rare conditions that affect metabolism, where the product of cysteine dioxygenase is a key driver of disease severity. Additionally, cysteine dioxygenase acts as a tumor suppressor gene, and its activity becomes blocked in diverse cancers. Understanding how cysteine dioxygenase is regulated may be important for research into these conditions. While it has been shown that excess cysteine drives the production and activity of cysteine dioxygenase, how the cell detects high levels of cysteine remained unknown. Warnhoff et al. sought to resolve this question using the roundworm Caenorhabditis elegans. First, the scientists demonstrated that, like in mammals, high levels of cysteine drive the production of cysteine dioxygenase in C. elegans. Next, the researchers used an approach called an unbiased genetic screening to find genes that induce cysteine dioxygenase production when they are mutated. These experiments revealed that the protein HIF-1 can drive the production of cysteine dioxygenase when it is activated by a pathway that senses hydrogen sulfide gas. Based on these results, Warnhoff et al. propose that high levels of cysteine lead to the production of hydrogen sulfide gas that in turn drives the production of cysteine dioxygenase via HIF-1 activation of gene expression. The results reported by Warnhoff et al. suggest that modulating HIF-1 signaling could control the activity of cysteine dioxygenase. This information could be used in the future to develop therapies for molybdenum cofactor deficiency, isolated sulfite oxidase deficiency and several types of cancer. However, first it will be necessary to demonstrate that the same signaling pathway is active in humans.


Assuntos
Caenorhabditis elegans , Cisteína , Animais , Caenorhabditis elegans/genética , Cisteína Dioxigenase/genética , Hipóxia , Fator 1 Induzível por Hipóxia , Homeostase
2.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205365

RESUMO

Dedicated genetic pathways regulate cysteine homeostasis. For example, high levels of cysteine activate cysteine dioxygenase, a key enzyme in cysteine catabolism in most animal and many fungal species. The mechanism by which cysteine dioxygenase is regulated is largely unknown. In an unbiased genetic screen for mutations that activate cysteine dioxygenase (cdo-1) in the nematode C. elegans, we isolated loss-of-function mutations in rhy-1 and egl-9, which encode proteins that negatively regulate the stability or activity of the oxygen-sensing hypoxia inducible transcription factor (hif-1). EGL-9 and HIF-1 are core members of the conserved eukaryotic hypoxia response. However, we demonstrate that the mechanism of HIF-1-mediated induction of cdo-1 is largely independent of EGL-9 prolyl hydroxylase activity and the von Hippel-Lindau E3 ubiquitin ligase, the classical hypoxia signaling pathway components. We demonstrate that C. elegans cdo-1 is transcriptionally activated by high levels of cysteine and hif-1. hif-1-dependent activation of cdo-1 occurs downstream of an H2S-sensing pathway that includes rhy-1, cysl-1, and egl-9. cdo-1 transcription is primarily activated in the hypodermis where it is also sufficient to drive sulfur amino acid metabolism. Thus, the regulation of cdo-1 by hif-1 reveals a negative feedback loop that maintains cysteine homeostasis. High levels of cysteine stimulate the production of an H2S signal. H2S then acts through the rhy-1/cysl-1/egl-9 signaling pathway to increase HIF-1-mediated transcription of cdo-1, promoting degradation of cysteine via CDO-1.

3.
iScience ; 25(8): 104688, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35847555

RESUMO

Metabolic perturbations can affect gene expression, for instance to rewire metabolism. While numerous efforts have measured gene expression in response to individual metabolic perturbations, methods that determine all metabolic perturbations that affect the expression for a given gene or set of genes have not been available. Here, we use a gene-centered approach to derive a first-pass metabolic regulatory network for Caenorhabditis elegans by performing RNAi of more than 1,400 metabolic genes with a set of 19 promoter reporter strains that express a fluorescent protein in the animal's intestine. We find that metabolic perturbations generally increase promoter activity, which contrasts with transcription factor (TF) RNAi, which tends to repress promoter activity. We identify several TFs that modulate promoter activity in response to perturbations of the electron transport chain and explore complex genetic interactions among metabolic pathways. This work provides a blueprint for a systems-level understanding of how metabolism affects gene expression.

4.
Genetics ; 219(1)2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34117752

RESUMO

In our group, we aim to understand metabolism in the nematode Caenorhabditis elegans and its relationships with gene expression, physiology, and the response to therapeutic drugs. Visualization of the metabolic pathways that comprise the metabolic network is extremely useful for interpreting a wide variety of experiments. Detailed annotated metabolic pathway maps for C. elegans are mostly limited to pan-organismal maps, many with incomplete or inaccurate pathway and enzyme annotations. Here, we present WormPaths, which is composed of two parts: (1) the careful manual annotation of metabolic genes into pathways, categories, and levels, and (2) 62 pathway maps that include metabolites, metabolite structures, genes, reactions, and pathway connections between maps. These maps are available on the WormFlux website. We show that WormPaths provides easy-to-navigate maps and that the different levels in WormPaths can be used for metabolic pathway enrichment analysis of transcriptomic data. In the future, we envision further developing these maps to be more interactive, analogous to road maps that are available on mobile devices.


Assuntos
Caenorhabditis elegans , Animais
5.
bioRxiv ; 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33398287

RESUMO

In our group, we aim to understand metabolism in the nematode Caenorhabditis elegans and its relationships with gene expression, physiology and the response to therapeutic drugs. On March 15, 2020, a stay-at-home order was put into effect in the state of Massachusetts, USA, to flatten the curve of the spread of the novel SARS-CoV2 virus that causes COVID-19. For biomedical researchers in our state, this meant putting a hold on experiments for nine weeks until May 18, 2020. To keep the lab engaged and productive, and to enhance communication and collaboration, we embarked on an in-lab project that we all found important but that we never had the time for: the detailed annotation and drawing of C. elegans metabolic pathways. As a result, we present WormPaths, which is composed of two parts: 1) the careful manual annotation of metabolic genes into pathways, categories and levels, and 2) 66 pathway maps that include metabolites, metabolite structures, genes, reactions, and pathway connections between maps. These maps are available on our WormFlux website. We show that WormPaths provides easy-to-navigate maps and that the different levels in WormPaths can be used for metabolic pathway enrichment analysis of transcriptomic data. In the unfortunate event of additional lockdowns, we envision further developing these maps to be more interactive, with an analogy of road maps that are available on mobile devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...