Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(15)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38171318

RESUMO

Scar eigenstates in a many-body system refers to a small subset of non-thermal finite energy density eigenstates embedded into an otherwise thermal spectrum. This novel non-thermal behaviour has been seen in recent experiments simulating a one-dimensional PXP model with a kinetically-constrained local Hilbert space realised by a chain of Rydberg atoms. We probe these small sets of special eigenstates starting from particular initial states by computing the spread complexity associated to time evolution of the PXP hamiltonian. Since the scar subspace in this model is embedded only loosely, the scar states form a weakly broken representation of the Lie algebra. We demonstrate why a careful usage of the forward scattering approximation (FSA), instead of any other method, is required to extract the most appropriate set of Lanczos coefficients in this case as the consequence of this approximate symmetry. Only such a method leads to a well defined notion of a closed Krylov subspace and consequently, that of spread complexity. We show this using three separate initial states, namely|Z2⟩,|Z3⟩and the vacuum state, due to the disparate classes of scar states hosted by these sectors. We also discuss systematic methods of remedying the imperfections in the FSA setup stemming from these approximate symmetries.

2.
Dalton Trans ; 53(7): 3010-3019, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38265230

RESUMO

Mitochondrial topisomerase 1 (Top1mt) is critical for mtDNA replication, transcription, and energy production. Here, we investigate the carrier-mediated targeted delivery of the anticancer drug irinotecan into the mitochondria to selectively trap Top1mt covalent complexes (Top1mtcc) and its role in anticancer therapeutics. We have designed a biocompatible mesoporous metal-organic framework (MOF) material, namely MIL-101(Fe), as the drug delivery carrier that selectively localizes inside mitochondria. In contrast to the traditional way of synthesising MOFs, here we have employed a vapour-assisted solvothermal method for the synthesis of MIL-101(Fe) using terephthalic acid as the organic linker and Fe(III) as the metal source. The advantage of this method is that it recycles the excess solvent (DMF) and reduces the amount of washing solvent. We demonstrate that MIL-101(Fe)-encapsulated irinotecan (MIL-Iri) was selectively targeted towards the mitochondria to poison Top1mtcc in a dose-dependent manner and was achieved at a low nanomolar drug concentration. We provide evidence that Top1mtcc generated by MIL-Iri leads to mtDNA damage in human colon and breast cancer cells and plays a significant role in cellular toxicity. Altogether, this study provides evidence for a new and effective strategy in anticancer chemotherapy.


Assuntos
Estruturas Metalorgânicas , Humanos , Irinotecano/farmacologia , Compostos Férricos , Portadores de Fármacos , Mitocôndrias , DNA Mitocondrial , Solventes
3.
Mitochondrion ; 60: 234-244, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34500116

RESUMO

Topoisomerases regulate DNA topology, organization of the intracellular DNA, the transmission of genetic materials, and gene expressions. Other than the nuclear genome, mitochondria also harbor the small, circular DNA (mtDNA) that encodes a critical subset of proteins for the production of cellular ATP; however, mitochondria are solely dependent on the nucleus for all the mitochondrial proteins necessary for mtDNA replication, repair, and maintenance. Mitochondrial genome compiles topological stress from bidirectional transcription and replication, therefore imports four nuclear encoded topoisomerases (Top1mt, Top2α, Top2ß, and Top3α) in the mitochondria to relax mtDNA supercoiling generated during these processes. Trapping of topoisomerase on DNA results in the formation of protein-linked DNA adducts (PDAs), which are widely exploited by topoisomerase-targeting anticancer drugs. Intriguingly mtDNA is potentially exposed to DNA damage that has been attributed to a variety of human diseases, including neurodegeneration, cancer, and premature aging. In this review, we focus on the role of different topoisomerases in the mitochondria and our current understanding of the mitochondrial DNA damage through trapped protein-DNA complexes, and the progress in the molecular mechanisms of the repair for trapped topoisomerase covalent complexes (Topcc). Finally, we have discussed how the pathological DNA lesions that cause mtDNA damage,trigger mitochondrial fission and mitophagy, which serve as quality control events for clearing damaged mtDNA.


Assuntos
Dano ao DNA , DNA Topoisomerases/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/fisiologia , Doenças Mitocondriais/metabolismo , Dinâmica Mitocondrial/fisiologia , DNA Topoisomerases/genética , Humanos , Mitocôndrias/genética
4.
ACS Appl Mater Interfaces ; 13(17): 20875-20884, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33886256

RESUMO

Pure spin current has transformed the research field of conventional spintronics due to its various advantages, including energy efficiency. An efficient mechanism for generation of pure spin current is spin pumping, and high effective spin-mixing conductance (Geff) and interfacial spin transparency (T) are essential for its higher efficiency. By employing the time-resolved magneto-optical Kerr effect technique, we report here a giant value of T in substrate/W (t)/Co20Fe60B20 (d)/SiO2 (2 nm) thin-film heterostructures in the beta-tungsten (ß-W) phase. We extract the spin diffusion length of W and spin-mixing conductance of the W/CoFeB interface from the variation of damping as a function of W and CoFeB thickness. This leads to a value of T = 0.81 ± 0.03 for the ß-W/CoFeB interface. A stark variation of Geff and T with the thickness of the W layer is obtained in accordance with the structural phase transition and resistivity variation of W with its thickness. Effects such as spin memory loss and two-magnon scattering are found to have minor contributions to damping modulation in comparison to the spin pumping effect which is reconfirmed from the unchanged damping constant with the variation of Cu spacer layer thickness inserted between W and CoFeB. The giant interfacial spin transparency and its strong dependence on crystal structures of W will be important for future spin-orbitronic devices based on pure spin current.

5.
Phys Rev Lett ; 124(10): 101602, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32216439

RESUMO

We propose a modification to Nielsen's circuit complexity for Hamiltonian simulation using the Suzuki-Trotter (ST) method, which provides a network like structure for the quantum circuit. This leads to an optimized gate counting linear in the geodesic distance and spatial volume, unlike in the original proposal. The optimized ST iteration order is correlated with the error tolerance and plays the role of an anti-de Sitter radial coordinate. The density of gates is shown to be monotonic with the tolerance and a holographic interpretation using path-integral optimization is given.

6.
J Phys Condens Matter ; 32(6): 065601, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-31627197

RESUMO

We present magnetic, thermodynamic, dielectric and structural investigations on the aluminoborate Ni2AlBO5, belonging to the ludwigite family. Room temperature structural refinement suggests that the system crystallizes in the orthorhombic Pbam symmetry, in similarity with most members of this material class. Magnetic and thermodynamic measurements shows that the system undergoes a phase transition to an antiferromagnetic state at 38 K, signatures of which are also seen in the lattice parameters and the dielectric constant. Short range magnetic correlations appear to persist to much higher temperatures-a regime in which the ac susceptibility exhibits a power law temperature dependence, in agreement with that expected for random exchange Heisenberg antiferromagnetic spin chains.

7.
Langmuir ; 35(39): 12630-12635, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31532685

RESUMO

The air-water interface is an ideal platform to produce two-dimensional (2D) structures involving anything from simple organic molecules to supramolecular moieties by exploiting hydrophobic-hydrophilic interactions. Here, we show, using grazing incidence X-ray scattering, the formation of a 2D ordered structure of a charge-transfer (C-T) complex, namely, dodecyl methyl viologen (DMV) as acceptor and coronene tetracarboxylate potassium salt (CS) as donor, at the air-water interface. We have observed a phase transition in the 2D ordered structure as the area per molecule is decreased with increasing surface pressure in a Langmuir trough. The high-pressure ordering of the hydrocarbon chains associated with DMV destroys long-range C-T conjugation of DMV and CS at the air-water interface. Our results also explain the formation of DMV-CS cylindrical reverse micelles and eventually long nanowires that get formed in the self-assembly process in the bulk medium to preserve both the C-T conjugation and the organic tail-tail organization.

8.
Phys Rev Lett ; 122(20): 201601, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31172758

RESUMO

We study the entanglement of purification (EOP), a measure of total correlation between two subsystems A and B, for free scalar field theory on a lattice and the transverse-field Ising model by numerical methods. In both of these models, we find that the EOP becomes a nonmonotonic function of the distance between A and B when the total number of lattice sites is small. When it is large, the EOP becomes monotonic and shows a plateaulike behavior. Moreover, we also show that the original reflection symmetry which exchanges A and B can get broken in optimally purified systems. We provide an interpretation of our results in terms of the interplay between classical and quantum correlations.

9.
J Phys Condens Matter ; 31(36): 365802, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31137018

RESUMO

A number of Dzyaloshinskii-Moriya interaction (DMI) driven canted antiferromagnets or weak ferromagnets (WFM) including hematite exhibit two distinct time scales in magnetization relaxation measurements, one of which is ultra-slow. This leads to the observation of a part of remanence that is time-stable in character. In this work, our endeavor is to optimize the magnitude of this time-stable remanence for the hematite, a room temperature WFM, as a function of shape size and morphology. A substantial enhancement in the magnitude of this unique remanence is observed in porous hematite, consisting of ultra-small nano particles, as compared to crystallites grown in regular morphology, such as cuboids or hexagonal plates. This time-stable remanence exhibits a peak-like pattern with magnetic field, which is significantly sharper in porous sample. Experimental data suggest that the extent and the magnitude of the spin canting associated with the WFM phase can be best gauged by the presence of this remanence and its unusual magnetic field dependence. Temperature variation of lattice parameters bring out correlations between strain effects that alter the bond length and bond angle associated with primary super exchange paths, which in-turn systematically alter the magnitude of the time-stable remanence. This study provides insights regarding a long standing problems of anomalies in the magnitude of magnetization on repeated cooling in case of hematite. Our data caps on these anomalies, which we argue, arise due to spontaneous spin canting associated with WFM phase. Our results also elucidate on why thermal cycling protocols during bulk magnetization measurements are even more crucial for hematite which exhibits both canted as well as pure antiferromgnetic phase.

10.
Phys Chem Chem Phys ; 19(33): 22033-22048, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28792024

RESUMO

Designing nanostructures of desired morphology calls for development of new synthetic protocols to stimulate structural alterations in templates, modulating the architecture of nano-metric structures. The present study is an endeavor to investigate structural modifications in reverse micellar nanotemplates of a cationic surfactant system, CTAB/butanol/water/isooctane, as a function of hydrotrope concentration (sodium salicylate) and amount of water loading, Wx, in the micellar pool by synchrotron small-angle X-ray scattering. The micellar structural transition from a one-dimensional cylinder to a prolate ellipsoid can be controlled by tuning the water-to-surfactant molar ratio while the hydrotrope modulates growth of the micellar droplets. The inter-micellar interactions in these systems could be best represented by the Polymer Reference Interaction Site (PRISM) model at lower water content in the reverse micellar pool and by the Macroion model at higher water loadings. The location of the hydrotrope inside the micellar assembly and its interaction with different components of the reverse micellar system is probed with the help of 1H NMR studies. The formation and tuning of anisotropic cylindrical/ellipsoidal reverse micellar droplets suggest promising application of such aggregates as "tunable soft templates" for fabricating fascinating nanostructures.

11.
Sci Rep ; 7(1): 246, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28325936

RESUMO

Self assembled nanofibers derived from donor-acceptor (D-A) pair of dodecyl methyl viologen (DMV) and potassium salt of coronene tetracarboxylate (CS) is an excellent material for the development of organic electronic devices particularly for ultrafast response to relative humidity (RH). Here we have presented the results of in-situ grazing incidence small angle x-ray scattering (GISAXS) measurements to understand aridity dependent self reorganization of the nanofibers. The instantaneous changes in the organization of the nanofibers was monitored with different equilibrium RH conditions. Additionally formation of nanofibers during drying was studied by GISAXS technique - the results show two distinct stages of structural arrangements, first the formation of a lamellar mesophase and then, the evolution of a distorted hexagonal lattice. The RH dependent GISAXS results revealed a high degree of swelling in the lattice of the micelles and reduction in the distortion of the hexagonal structure with increase in RH. In high RH condition, the nanofibers show elliptical distortion but could not break into lamellar phase as observed during formation through drying. This observed structural deformation gives insight into nanoscopic structural changes of the micelles with change in RH around it and in turn explains ultrafast sensitivity in its conductivity for RH variation.

12.
Sci Rep ; 5: 15732, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26506865

RESUMO

Epitaxial InAs quantum dots grown on GaAs substrate are being used in several applications ranging from quantum communications to solar cells. The growth mechanism of these dots also helps us to explore fundamental aspects of self-organized processes. Here we show that composition and strain profile of the quantum dots can be tuned by controlling in-plane density of the dots over the substrate with the help of substrate-temperature profile. The compositional profile extracted from grazing incidence x-ray measurements show substantial amount of inter-diffusion of Ga and In within the QD as a function of height in the low-density region giving rise to higher variation of lattice parameters. The QDs grown with high in-plane density show much less spread in lattice parameter giving almost flat density of In over the entire height of an average QD and much narrower photoluminescence (PL) line. The results have been verified with three different amounts of In deposition giving systematic variation of the In composition as a function of average quantum dot height and average energy of PL emission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...