Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(26): 18373-18384, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38860252

RESUMO

Photophysical properties of three red fluorescent protein (RFP) chromophore analogues are reported here. The three RFP chromophore analogues differ in the additional conjugation present in the RFP chromophore. The three chromophores do not exhibit any solvent effect in both absorption and fluorescence spectra. The photoirradiation experiments and recording of 1H NMR before and after irradiation on one of the three RFP model chromophores show isomerization of the (Z,E) diastereomer to the (E,E) diastereomer. Calculation of S0 and S1 potential energy curves shows the preference for isomerization through the exocyclic C[double bond, length as m-dash]C bond with Z-stereochemistry, thus corroborating the experimental results. The computational studies also suggest that torsional motion along the exocyclic C[double bond, length as m-dash]C bond pushes the molecules to a conical intersection, thus paving the pathway for radiationless deactivation.

2.
Chemphyschem ; 25(14): e202400004, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619023

RESUMO

In recent times, the theoretical prediction of catalytic efficiency is of utmost urgency. With the advent of density functional theory (DFT), reliable computations can delineate a quantitative aspect of the study. To this state-of-the-art approach, valuable incorporation would be a tool that can acknowledge the efficiency of a catalyst. In the current work, we developed the efficiency conceptualization model (ECM) that utilizes the quantum mechanical tool to achieve efficiency in terms of turnover frequency (TOF). Twenty-six experimentally designed transition metal (TM) water oxidation catalysts were chosen under similar experimental conditions of temperature, pressure, and pH to execute the same. The computations conclude that the Fe-based [Fe(OTf)2(Me2Pytacn)] (MWOC-17) is a highly active catalyst and, therefore, can endure for more time in the catalytic cycle. Our results conclude that the Ir-based catalysts [Cp*Ir(κ2-N,O)X] with MWOC-23: X=Cl; and MWOC-24: X=NO3 report the highest computed turnover numbers (TONs), τ c o m p u t e d T O N 0 ${\tau _{computed\;TON}^0 }$ of 406 and 490 against the highest experimental TONs, τ e x p e r i m e n t a l T O N ${\tau _{experimental\;TON} }$ of 1200 and 2000 respectively, whereas the Co-based [Co(12-TMC)]2+ (MWOC-19) has the lowest TONs ( τ c o m p u t e d T O N 0 ${\tau _{computed\;TON}^0 }$ =19, τexperimental TON=16) among the chosen catalysts and thereby successful in corroborating the previous experimental results.

3.
Chemphyschem ; 24(23): e202300413, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37712533

RESUMO

The importance of noncovalent interaction has gained attention in various domains covering drug and novel catalyst design. The present study mainly characterizes the role of hydrogen bond (H-bond) and other intermolecular interactions in different (1 : 1) complex analogues formed between the N-aryl-thiazol-2-ylidene (YR) and five proton donor (HX) molecules. The analysis of the singlet-triplet energy gap ( Δ E S - T ${{\rm{\Delta }}E_{\left( {S - T} \right)} }$ ) confirmed the stability of the singlet state for this class of N-aryl-thiazol-2-ylidenes than the triplet state. The interaction energy values of the YR-HX complexes follow the order: YR-NH3

4.
Phys Chem Chem Phys ; 25(33): 22089-22102, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37610422

RESUMO

Vibrational spectroscopy in supersonic jet expansions is a powerful tool to assess molecular aggregates in close to ideal conditions for the benchmarking of quantum chemical approaches. The low temperatures achieved as well as the absence of environment effects allow for a direct comparison between computed and experimental spectra. This provides potential benchmarking data which can be revisited to hone different computational techniques, and it allows for the critical analysis of procedures under the setting of a blind challenge. In the latter case, the final result is unknown to modellers, providing an unbiased testing opportunity for quantum chemical models. In this work, we present the spectroscopic and computational results for the first HyDRA blind challenge. The latter deals with the prediction of water donor stretching vibrations in monohydrates of organic molecules. This edition features a test set of 10 systems. Experimental water donor OH vibrational wavenumbers for the vacuum-isolated monohydrates of formaldehyde, tetrahydrofuran, pyridine, tetrahydrothiophene, trifluoroethanol, methyl lactate, dimethylimidazolidinone, cyclooctanone, trifluoroacetophenone and 1-phenylcyclohexane-cis-1,2-diol are provided. The results of the challenge show promising predictive properties in both purely quantum mechanical approaches as well as regression and other machine learning strategies.

5.
Chemphyschem ; 24(3): e202200727, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36281900

RESUMO

The conical intersection (CI) governs the ultra-fast relaxation of excited states in a radiationless manner and are observed mainly in photochemical processes. In the current work, we investigated the effects of substituents on the reaction dynamics for the conversion of gauche-1,3-butadiene to bicyclobutane via photochemical electrocyclization. We incorporated both electron withdrawing (-F) and donating (-CH3 ) groups in the conjugated system. In our study, we optimized the minimum energy conical intersection (MECI) geometries using the multi-configurational state-averaged CASSCF approach, whereas, to study the ground state reaction pathways for the substituted derivatives, dispersion corrected, B3LYP-D3 functional was used. The non-adiabatic surface hopping molecular dynamics simulations were performed to observe the behaviour of electronic states involved throughout the photoconversion process. The results obtained from the multi-reference second-order perturbation correction of energy at the XMS-CASPT2 level of theory, topography analysis, and non-adiabatic dynamics suggest that the -CH3 substituted derivatives can undergo faster thermal conversion to the product in the ground state with a smaller activation energy barrier compared to -F substituted derivative. Our study also reveals that the GBUT to BIBUT conversion follows both conrotatory and disrotatory pathways, whereas, on substitution with -F or -CH3 , the conversion proceeds via the conrotatory pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA