Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Angew Chem Int Ed Engl ; 63(22): e202403697, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38512122

RESUMO

The energy barrier to dissociate neutral water has been lowered by the differential intermediate binding on the charge-modulated metal centers of Co85Mo15 sheets supported on Ni-foam (NF), where the overpotential for hydrogen evolution reaction (HER) in 1 M phosphate buffer solution (PBS) is only 50±9 mV at -10 mA cm-2. It has a turnover frequency (TOF) of 0.18 s-1, mass activity of 13.2 A g-1 at -200 mV vs. reversible hydrogen electrode (RHE), and produces 16 ml H2 h-1 at -300 mV vs. RHE, more than double that of 20 % Pt/C. The Moδ+ and Coδ- sites adsorb OH*, and H*, respectively, and the electron injection from Co to H-O-H cleaves the O-H bond to form the Mo-OH* intermediate. Operando spectral analyses indicate a weak H-bonded network for facilitating the H2O*/OH* transport, and a potential-induced reversal of the charge density from Co to the more electronegative Mo, because of the electron withdrawing Co-H* and Mo-OH* species. Co85Mo15/NF can also drive the complete electrolysis of neutral water at only 1.73 V (10 mA cm-2). In alkaline, and acidic media, it demonstrates a Pt-like HER activity, accomplishing -1000 mA cm-2 at overpotentials of 161±7, and 175±22 mV, respectively.

2.
Chem Commun (Camb) ; 60(27): 3693-3696, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38477079

RESUMO

Facet control by primary amines can bolster the optoelectronic parameters of A2BIB'IIIX6 perovskite nanocrystals (NCs) with large indirect bandgaps. The 18-C amine competitively attaches to the (222) facet of Cs2AgBiBr6 (CABB) NCs, 16-C and 14-C bind to (400) and (440), and 12-C binds to (400). The NCs with only the (400) facet decrease the bandgap and exciton binding energy by 0.26 eV and 15 meV, respectively.

3.
Small ; 20(8): e2304920, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37817355

RESUMO

The transition from 3D to 2D lead halide perovskites is traditionally led by the lattice incorporation of bulky organic cations. However, the transformation into a coveted 2D superlattice-like structure by cationic substitution at the Pb2+ site of 3D perovskite is unfamiliar. It is demonstrated that the gradual increment of [Sn2+ ] alters the FASnx Pb1- x I3 nanocrystals into the Ruddlesden-Popper-like nanoplatelets (NPLs), with surface-absorbed oleic acid (OA) and oleylamine (OAm) spacer ligand at 80 °C (FA+ : formamidinium cation). These NPLs are stacked either by a perfect alignment to form the superlattice or by offsetting the NPL edges because of their lateral displacements. The phase transition occurs from the Sn/Pb ratio ≥0.011, with 0.64 wt% of Sn2+ species. At and above Sn/Pb = 0.022, the NPL superlattice stacks start to grow along [00l] with a repeating length of 4.37(3) nm, comprising the organic bilayer and the inorganic block having two octahedral layers (n = 2). Besides, a photoluminescence quantum yield of 98.4% is obtained with Sn/Pb = 0.011 (n ≥ 4), after surface passivation by trioctylphosphine (TOP).

4.
J Am Chem Soc ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906676

RESUMO

The organic spacer molecule is known to regulate the optoelectronic properties of two-dimensional (2D) perovskites. We show that the spacer layer thickness determines the nature of optical transitions, direct or indirect, by controlling the structural properties of the inorganic layer. The spin-orbit interactions lead to different electron spin orientations for the states associated with the conduction band minimum (CBM) and the valence band maximum (VBM). This leads to a direct as well as an indirect component of the transitions, despite them being direct in momentum space. The shorter chains have a larger direct component, leading to a better optoelectronic performance. The mixed halide Sn2+ Dion-Jacobson (DJ) perovskite with the shortest 4-C diammonium spacer outshines the photodetection parameters of those having longer (6-C and 8-C) spacers and the corresponding Ruddlesden-Popper (RP) phases. The DJ system with a 4-C spacer and equimolar Br/I embodies an unprecedentedly high responsivity of 78.1 A W-1 under 3 V potential bias at 485 nm wavelength, among the DJ perovskites. Without any potential bias, this phase manifests the self-powered photodetection parameters of 0.085 A W-1 and 9.9 × 1010 jones. The unusual role of electron spin texture in these high-performance photodetectors of the lead-free DJ perovskites provides an avenue to exploit the information coded in spins for semiconductor devices without any ferromagnetic supplement or magnetic field.

5.
ACS Appl Mater Interfaces ; 15(43): 50479-50488, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862132

RESUMO

The performance of perovskite solar cells (PSCs) is governed by the quality of perovskite films, whereby compact, pinhole-free perovskite films are desired, in addition to its composition. We have demonstrated probe sonication as a processing technique to provide positive feedback for enhancing the perovskite film quality and photovoltaic parameters, with two systems, CH3NH3PbI3 (MAPbI3) and Cs0.17FA0.83Pb(I0.83Br0.17)3. In probe sonication, the ultrasound results in the formation, growth, and collapse of the bubbles through shock wave inside the gas phase of the collapsing bubble. This phenomenon has a chemical impact on the nucleation of the perovskite phases and interconnectivity of the grains. The 60 min sonicated films with stronger hydrogen bonding network are devoid of unwanted Pb0, δ-FAPbI3, and PbI2 phases, having tightly packed homogeneous grains, minimum electron-hole recombination pathways, and improved light absorption. The surface potential remains mostly unaltered across the grains and grain boundaries, and the realignment of the Fermi energy (EF) favors facile carrier transport. The photoconversion efficiency (PCE) of the MAPbI3 and Cs0.17FA0.83Pb(I0.83Br0.17)3 devices is improved by 28.1 and 17.2% in comparison to the pristine perovskites, respectively. The 60 min sonicated Cs0.17FA0.83Pb(I0.83Br0.17)3 PSC has 20.20 ± 0.40% PCE with 1000 h ambient stability having >60% retention of the original PCE.

6.
Chem Sci ; 14(36): 9770-9779, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736622

RESUMO

New perovskite phases having diverse optoelectronic properties are the need of the hour. We present five variations of R2AgM(iii)X8, where R = NH3C4H8NH3 (4N4) or NH3C6H12NH3 (6N6); M(iii) = Bi3+ or Sb3+; and X = Br- or I-, by tuning the composition of (4N4)2AgBiBr8, a structurally rich hybrid layered double perovskite (HLDP). (4N4)2AgBiBr8, (4N4)2AgSbBr8, and (6N6)2AgBiBr8 crystallize as Dion-Jacobson (DJ) HLDPs, whereas 1D (6N6)SbBr5, (4N4)-BiI and (4N4)-SbI have trans-connected chains by corner-shared octahedra. Ag+ stays out of the 1D lattice either when SbBr63- distortion is high or if Ag+ needs to octahedrally coordinate with I-. Band structure calculations show a direct bandgap for all the bromide phases except (6N6)2AgBiBr8. (4N4)2AgBiBr8 with lower octahedral tilt shows a maximum UV responsivity of 18.8 ± 0.2 A W-1 and external quantum efficiency (EQE) of 6360 ± 58%, at 2.5 V. When self-powered (0 V), (4N4)-SbI has the best responsivity of 11.7 ± 0.2 mA W-1 under 485 nm visible light, with fast photoresponse ≤100 ms.

7.
ACS Nano ; 17(11): 10393-10406, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37228184

RESUMO

Infectious bacterial biofilms are recalcitrant to most antibiotics compared to their planktonic version, and the lack of appropriate therapeutic strategies for mitigating them poses a serious threat to clinical treatment. A ternary heterojunction material derived from a Bi-based perovskite-TiO2 hybrid and a [Ru(2,2'-bpy)2(4,4'-dicarboxy-2,2'-bpy)]2+ (2,2'-bpy, 2,2'-bipyridyl) as a photosensitizer (RuPS) is developed. This hybrid material is found to be capable of generating reactive oxygen species (ROS)/reactive nitrogen species (RNS) upon solar light irradiation. The aligned band edges and effective exciton dynamics between multisite heterojunctions are established by steady-state/time-resolved optical and other spectroscopic studies. Proposed mechanistic pathways for the photocatalytic generation of ROS/RNS are rationalized based on a cascade-redox processes arising from three catalytic centers. These ROS/RNS are utilized to demonstrate a proof-of-concept in treating two elusive bacterial biofilms while maintaining a high level of biocompatibility (IC50 > 1 mg/mL). The in situ generation of radical species (ROS/RNS) upon photoirradiation is established with EPR spectroscopic measurements and colorimetric assays. Experimental results showed improved efficacy toward biofilm inactivation of the ternary heterojunction material as compared to their individual/binary counterparts under solar light irradiation. The multisite heterojunction formation helped with better exciton delocalization for an efficient catalytic biofilm inactivation. This was rationalized based on the favorable exciton dissociation followed by the onset of multiple oxidation and reduction sites in the ternary heterojunction. This together with exceptional photoelectric features of lead-free halide perovskites outlines a proof-of-principle demonstration in biomedical optoelectronics addressing multimodal antibiofilm/antimicrobial modality.


Assuntos
Biofilmes , Bismuto , Bismuto/farmacologia , Bismuto/química , Espécies Reativas de Oxigênio
8.
Angew Chem Int Ed Engl ; 62(18): e202301269, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36880387

RESUMO

The immiscibility of crystallographic facets in multi-metallic catalysts plays a key role in driving the green H2 production by water electrolysis. The lattice mismatch between tetragonal In and face-centered cubic (fcc) Ni is 14.9 % but the mismatch with hexagonal close-packed (hcp) Ni is 49.8 %. Hence, in a series of Ni-In heterogeneous alloys, In is selectively incorporated in the fcc Ni. The 18-20 nm Ni particles have 36 wt % fcc phase, which increases to 86 % after In incorporation. The charge transfer from In to Ni, stabilizes the Ni0 state and In develops a fractional positive charge that favors *OH adsorption. With only 5 at% In, 153 mL h-1 H2 is evolved at -385 mV with mass activity of 57.5 A g-1 at-400 mV, 200 h stability at -0.18 V versus reversible hydrogen electrode (RHE), and Pt-like activity at high current densities, due to the spontaneous water dissociation, lower activation energy barrier, optimal adsorption energy of OH- ions and the prevention of catalyst poisoning.

9.
Chem Sci ; 14(11): 3056-3069, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36937581

RESUMO

The prevalence of intermetallic charge transfer is a marvel for fine-tuning the electronic structure of active centers in electrocatalysts. Although Pauling electronegativity is the primary deciding factor for the direction of charge transfer, we report an unorthodox intra-lattice 'inverse' charge transfer from Mo to Ni in two systems, Ni73Mo alloy electrodeposited on Cu nanowires and NiMo-hydroxide (Ni : Mo = 5 : 1) on Ni foam. The inverse charge transfer deciphered by X-ray absorption fine structure studies and X-ray photoelectron spectroscopy has been understood by the Bader charge and projected density of state analyses. The undercoordinated Mo-center pushes the Mo 4d-orbitals close to the Fermi energy in the valence band region while Ni 3d-orbitals lie in the conduction band. Since electrons are donated from the electron-rich Mo-center to the electron-poor Ni-center, the inverse charge transfer effect navigates the Mo-center to become positively charged and vice versa. The reverse charge distribution in Ni73Mo accelerates the electrochemical hydrogen evolution reaction in alkaline and acidic media with 0.35 and 0.07 s-1 turnover frequency at -33 ± 10 and -54 ± 8 mV versus the reversible hydrogen electrode, respectively. The corresponding mass activities are 10.5 ± 2 and 2.9 ± 0.3 A g-1 at 100, and 54 mV overpotential, respectively. Anodic potential oxidizes the Ni-center of NiMo-hydroxide for alkaline water oxidation with 0.43 O2 s-1 turnover frequency at 290 mV overpotential. This extremely durable homologous couple achieves water and urea splitting with cell voltages of 1.48 ± 0.02 and 1.32 ± 0.02 V, respectively, at 10 mA cm-2.

10.
J Am Chem Soc ; 145(3): 1649-1659, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36622362

RESUMO

The synthesis of homogeneous covalent organic framework (COF) thin films on a desired substrate with decent crystallinity, porosity, and uniform thickness has great potential for optoelectronic applications. We have used a solution-processable sphere transmutation process to synthesize 300 ± 20 nm uniform COF thin films on a 2 × 2 cm2 TiO2-coated fluorine-doped tin oxide (FTO) surface. This process controls the nucleation of COF crystallites and molecular morphology that helps the nanospheres to arrange periodically to form homogeneous COF thin films. We have synthesized four COF thin films (TpDPP, TpEtBt, TpTab, and TpTta) with different functional backbones. In a close agreement between the experiment and density functional theory, the TpEtBr COF film showed the lowest optical band gap (2.26 eV) and highest excited-state lifetime (8.52 ns) among all four COF films. Hence, the TpEtBr COF film can participate in efficient charge generation and separation. We constructed optoelectronic devices having a glass/FTO/TiO2/COF-film/Au architecture, which serves as a model system to study the optoelectronic charge transport properties of COF thin films under dark and illuminated conditions. Visible light with a calibrated intensity of 100 mW cm-2 was used for the excitation of COF thin films. All of the COF thin films exhibit significant photocurrent after illumination with visible light in comparison to the dark. Hence, all of the COF films behave as good photoactive substrates with minimal pinhole defects. The fabricated out-of-plane photodetector device based on the TpEtBr COF thin film exhibits high photocurrent density (2.65 ± 0.24 mA cm-2 at 0.5 V) and hole mobility (8.15 ± 0.64 ×10-3 cm2 V-1 S-1) compared to other as-synthesized films, indicating the best photoactive characteristics.

11.
J Phys Chem Lett ; 13(39): 9103-9113, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36154102

RESUMO

Semiconductor nanostructures with near-unity photoluminescence quantum yields (PLQYs) are imperative for light-emitting diodes and display devices. A PLQY of 99.7 ± 0.3% has been obtained by stabilizing 91% Sn2+ in the Dion-Jacobson (8N8)SnBr4 (8N8-DJ) perovskite with 1,8-diaminooctane (8N8) spacer. The PLQY is favored by a longer spacer molecule and out-of-plane octahedral tilting. The PLQY shows one-month ambient stability under high relative humidity (RH) and temperature. With n-octylamine (8N) spacer, Ruddlesden-Popper (8N)2SnBr4 (8N-RP) also shows PLQY of 91.7 ± 0.6%, but it has poor ambient stability. The 5-300 K PL experiments decipher the self-trapped excitons (STEs) where the self-trapping depth is 25.6 ± 0.4 meV below the conduction band because of strong carrier-phonon coupling. The microsecond long-lived STE dominates over the band edge (BE) peaks at lower excitation wavelengths and higher temperatures. The higher PLQY and stability of 8N8-DJ are due to the stronger interaction between SnBr64- octahedra and 8N8 spacer, leading to a rigid structure.

12.
ACS Appl Mater Interfaces ; 14(33): 37982-37989, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35947785

RESUMO

Herein, we describe the synthesis, characterization, and optoelectronic investigation of a stable 4nπ dihydrotetraazapentacene derivative. The neutral dihydrotetraazapentacene contains a 24π-conjugated N-heteroacene core with two phenyl pendants appended thereof. The exceptional stability of this formally antiaromatic π-system is attributed to the fused dihydropyrazine ring, which has ethenamine (enamine) conjugations, and hence, the π-electrons delocalize over the nearly planar azapentacene core to endow with a global aromatic characteristic. The embedded dihydropyrazine also offers an additional Clar's sextet with enhanced aromaticity. The present dihydrotetraazapentacene can be considered as a multitasking N-heteroacene, which showed photoresponsive nature under visible light illumination, acidochromism in solution, and p-type charge transport with an appreciable field-effect hole mobility of 0.02 cm2 V-1 s-1 and a bulk p-type mobility of 0.98 × 10-4 cm2 V-1 s-1 in the space charge-limited regime of operation measured in the hole-only device. Nucleus-independent chemical shift calculation, anisotropy of the induced current density plot, and anisotropic mobility calculation were performed to support the experimental findings.

13.
Nanotechnology ; 33(41)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35793644

RESUMO

Lead-free layered double perovskite nanocrystals (NCs) with tunable visible range emission, high carrier mobility and low trap density are the need of the hour to make them applicable for optoelectronic and photovoltaic devices. Introduction of Cu2+in the high band gap Cs3Sb2Cl9lattice transforms it to the monoclinic Cs4CuSb2Cl12(CCSC) NCs having a direct band gap of 1.96 eV. The replacement of 50% Cl-by I-ions generates <5 nm Cs4CuSb2Cl6I6(C6I6) monodispersed NCs with an unchanged crystal system but with further lowering of the band gap to 1.92 eV. Thep-type C6I6 NCs exhibit emission spectra, lower trap density, appreciable hole mobility and most importantly a lower exciton binding energy of only 50.8 ± 1.3 meV. The temperature dependent photoluminescence (PL) spectra of the C6I6 NCs show a decrease in non-radiative recombination from 300 K down to 78 K. When applied as the photoactive layer in out-of-plane photodetector devices, C6I6 NC devices exhibit an appreciable responsivity of 0.67 A W-1at 5 V, detectivity of 4.55 × 108Jones (2.5 V), and fast photoresponse with rise and fall time of 126 and 94 ms, respectively. On the other hand, higher I-substitution in Cs4CuSb2Cl2I10NCs (C2I10) degrades the lattice into a mixture of monoclinic and trigonal crystal phases, which also lowers the device performance.

14.
Chem Rec ; 22(9): e202200070, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35675947

RESUMO

Modern day electrochemical devices find applications in a wide range of industrial sectors, from consumer electronics, renewable energy management to pollution control by electric vehicles and reduction of greenhouse gas. There has been a surge of diverse electrochemical systems which are to be scaled up from the lab-scale to industry sectors. To achieve the targets, the electrocatalysts are continuously upgraded to meet the required device efficiency at a low cost, increased lifetime and performance. An atomic scale understanding is however important for meeting the objectives. Transitioning from the bulk to the nanoscale regime of the electrocatalysts, the existence of defects and interfaces is almost inevitable, significantly impacting (augmenting) the material properties and the catalytic performance. The intrinsic defects alter the electronic structure of the nanostructured catalysts, thereby boosting the performance of metal-ion batteries, metal-air batteries, supercapacitors, fuel cells, water electrolyzers etc. This account presents our findings on the methods to introduce measured imperfections in the nanomaterials and the impact of these atomic-scale irregularities on the activity for three major reactions, oxygen evolution reaction (OER), oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). Grain boundary (GB) modulation of the (ABO3 )n type perovskite oxide by noble metal doping is a propitious route to enhance the OER/ORR bifunctionality for zinc-air battery (ZAB). The perovskite oxides can be tuned by calcination at different temperatures to alter the oxygen vacancy, GB fraction and overall reactivity. The oxygen defects, unsaturated coordination environment and GBs can turn a relatively less active nanostructure into an efficient redox active catalyst by imbibing plenty of electrochemically active sites. Obviously, the crystalline GB interface is a prerequisite for effective electron flow, which is also applicable for the crystalline surface oxide shell on metal alloy core of the nanoparticles (NPs). The oxygen vacancy of two-dimensional (2D) perovskite oxide can be made reversible by the A-site termination of the nanosheets, facilitating the reversible entry and exit of a secondary phase during the redox processes. In several instances, the secondary phases have been observed to introduce the right proportion of structural defects and orbital occupancies for adsorption and desorption of reaction intermediates. Also, heterogeneous interfaces can be created by wrapping the perovskite oxide with negatively charged surface by layered double hydroxide (LDH) can promote the OER process. In another approach, ion intercalation at the 2D heterointerfaces steers the interlayer spacing that can influence the mass diffusion. Similar to anion vacancy, controlled formation of the cation vacancies can be achieved by exsolving the B-site cations of perovskite oxides to surface anchored catalytically active metal/alloy NPs. In case of the alloy electrocatalysts, incomplete solid solution by two or more mutually immiscible metals results in heterogeneous alloys having differently exposed facets with complementary functionalities. From the future perspective, new categories of defect structures including the 2D empty spaces or voids leading to undercoordinated sites, the multiple interfaces in heterogeneous alloys, antisite defects between anions and cations, and the defect induced inverse charge transfer should bring new dimensionalities to this riveting area of research.

15.
Nanoscale ; 14(11): 4281-4291, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35244646

RESUMO

The increasingly popular, lead-free perovskite, Cs3Bi2I9 has a vulnerable Bi3+ state under reductive potentials, due to the high standard reduction potential of Bi3+/Biδ+ (0 < δ < 3). Contrary to this fundamental understanding, herein, ligand-coated Cs3Bi2I9 nanodiscs (NDs) demonstrate outstanding electrochemical stability with up to -1 V versus a saturated calomel electrode in aqueous 0.63 M (5% v/v) and 6.34 M (50% v/v) hydroiodic acid (HI), with a minor BiI3 fraction due to the unavoidable partial aqueous disintegration of the perovskite phase after 8 and 16 h, respectively. A dynamic equilibrium of saturated 0.005 M NDs maintains the common ion effect of I-, and remarkably stabilizes ∼93% Bi3+ in 0.63 M HI under a strong reductive potential. In comparison, the hexagonal phase of bulk Cs3Bi2I9 disintegrates considerably in the semi-aqueous media. Lowering the concentration of synthetic HI from the commonly used ∼50% v/v by elevating the pH from -0.8 to 0.2 helps in reducing the cost per unit of H2 production. Our Cs3Bi2I9 NDs with a hexagonal lattice have 4-6 (002) planes stacked along the c-axis. With 0.005 M photostable NDs, 22.5 µmol h-1 H2 is photochemically obtained within 8 h in a 6.34 M HI solution. Electrocatalytic H2 evolution occurs with a turnover frequency of 11.7 H2 per s at -533 mV and outstanding operational stability for more than 20 h.

16.
ACS Appl Mater Interfaces ; 13(36): 43104-43114, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34482693

RESUMO

Chemical transformation of typically "nonlayered" phases into two-dimensional structures remains a formidable task. Among the thickness tunable CsPbX3 (X = Br, Br/I, I) nanosheets (NSs), CsPbBr1.5I1.5 NSs with a thickness of ∼4.9 nm have structural stability superior to ∼6.8 nm CsPbI3 NSs and better hole mobility than ∼3.7 nm CsPbBr3 NSs. Moving beyond the much-explored CsPbBr3 photodetectors, we demonstrate a sharp improvement of the photodetection of CsPbBr1.5I1.5 NS devices by thickening the NSs to ∼6.1 nm through combining 8-carbon and 18-carbon ligand surfactants. Thereby, the responsivity increases up to one of the highest values of 3313 A W-1 at 1.5 V (and 3946 A W-1 at 2 V) with detectivity of 1.6 × 1011 Jones at 1.5 V, due to the increase in carrier mobility up to 7.9 × 10-4 cm2 V-1 s-1. The better device performance of the NSs than 8.6-13.9 nm nanocubes (NCs) is due to their planarity which facilitates in-plane mobilization of the charge carriers.

17.
Chem Asian J ; 16(21): 3444-3452, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34459520

RESUMO

Metal-organic coordination polymers (CP) have attracted the scientific attention for electrochemical water oxidation as it has the similar coordination structure like natural photosynthetic coordinated complex. However, the harsh synthesis conditions and bulky nature pose a major challenge in the field of catalysis. Herein, 3-5 nm CP particles synthesized at room temperature using aqueous solutions of Ni2+ /Cu2+ and 2,5-dihydroxyterepthalic acid as precursor were applied for alkaline water and urea electrolysis. The overpotential required is only 300 mV at 10 mA cm-2 by Nano-Ni CP for water oxidation, with turnover frequency (TOF) of 21.4 s-1 which is around 8 times higher than its bulk-counterpart. Overall water and urea splitting were achieved with Nano-Cu (-) ∥ Nano-Ni (+) couple on Ni foam at 1.69 and 1.52 V to achieve 10 mA cm-2 , respectively. High electrochemical surface area (ECSA), high TOF, and enhanced mass diffusion are found to be the key parameters responsible for the state-of-the-art water and urea splitting performances of nano-CPs as compared to their bulk counterparts.

18.
Org Biomol Chem ; 19(23): 5114-5120, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34018542

RESUMO

Herein we report the synthesis, characterization and application of an azaheterocycle 4 obtained via an unprecedented C-N coupling. The neutral azaheterocycle undergoes one-electron reduction to form an air-stable radical anion in situ, which provides added benefit towards operational stability of the device during n-type charge transport. The unusual stability of this radical anion is due to the fact that the fused cyclopentane ring upon reduction forms aromatic cyclopentadienyl anion, and the negative charge delocalizes over the nearly planar azaheterocycle core. The present azaheterocycle can be considered as a mimic of a fullerene fragment, which shows balanced ambipolar charge transport in space charge limited current (SCLC) devices with moderate hole (µh) and electron (µe) mobilities (µh = 2.96 × 10-3 cm2 V-1 s-1 and µe = 1.11 × 10-4 cm2 V-1 s-1). Theoretical studies such as nucleus independent chemical shifts (NICS) calculations, anisotropy of the induced current density (ACID) plots, spin density mapping and anisotropic mobility calculations were performed to corroborate the experimental findings.

19.
Langmuir ; 37(18): 5513-5521, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33909421

RESUMO

The long-term operation of organic-inorganic hybrid perovskite solar cells is hampered by the microscopic strain introduced by the multiple thermal cycles during the synthesis of the material via a solution process route. This setback can be eliminated by a room temperature synthesis scheme. In this work, a mechanochemical synthesis technique at room temperature is employed to process CH3NH3PbI2Br films for fabricating perovskite solar cell devices. The solar cell device has produced a 957 mV Voc, a 16.92 mA/cm2 short circuit current density, and a 10.5% efficiency. These values are higher than the published values on mechanochemically synthesized CH3NH3PbI3. The charge transport properties of the devices are studied using DC conductivity and AC impedance spectroscopy, which show a multichannel transport mechanism having both ionic and electronic contributions. A much smaller defect density in the mechanochemically synthesized hybrid perovskite material is confirmed. A polarization assisted recombination mechanism is observed to have a dominant effect on the overall charge transport mechanism. However, no obvious grain boundary and intralayer lattice defect related responses are found in the perovskite layer. Interfacial charge transport and recombination are found to show major effects on both the temperature dependent and illumination dependent impedance spectra.

20.
Inorg Chem ; 60(10): 6911-6921, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33667066

RESUMO

The role of electrochemical interfaces in energy conversion and storage is unprecedented and more so the interlayers of two-dimensional (2D) heterostructures, where the physicochemical nature of these interlayers can be adjusted by cation intercalation. We demonstrate in situ intercalation of Ni2+ and Co2+ with similar ionic radii of ∼0.07 nm in the interlayer of 1T-WS2 while electrodepositing NiCo layered double hydroxide (NiCo-LDH) to create a 2D heterostructure. The extent of intercalation varies with the electrodeposition time. Electrodeposition for 90 s results in 22.4-nm-thick heterostructures, and charge transfer ensues from NiCo-LDH to 1T-WS2, which stabilizes the higher oxidation states of Ni and Co. Density functional theory calculations validate the intercalation principle where the intercalated Ni and Co d electrons contribute to the density of states at the Fermi level of 1T-WS2. Water electrolysis is taken as a representative redox process. The 90 s electrodeposited heterostructure needs the relatively lowest overpotentials of 134 ± 14 and 343 ± 4 mV for hydrogen and oxygen evolution reactions, respectively, to achieve a current density of ±10 mA/cm2 along with exceptional durability for 60 h in 1 M potassium hydroxide. The electrochemical parameters are found to correlate with enhanced mass diffusion through the cation and Cl--intercalated interlayer spacing of 1T-WS2 and the number of active sites. While 1T-WS2 is mostly celebrated as a HER catalyst in an acidic medium, with the help of intercalation chemistry, this work explores an unfound territory of this transition-metal dichalcogenide to catalyze both half-reactions of water electrolysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...