Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 146: 107294, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507997

RESUMO

Oxindoles are potent anti-cancer agents and are also used against microbial and fungal infections and for treating neurodegenerative diseases. These oxindoles are earlier established as estrogen receptor (ER)-targeted agents for killing ER (+) cancer cells. Our previously developed bis-arylidene oxindole, Oxifen (OXF) exhibits effective targeting towards ER (+) cancer cells which has a structural resemblance with tamoxifen. Herein, we have designed and synthesized few structural analogues of OXF such as BPYOX, ACPOX and ACPOXF to examine its cytotoxicity in different cancer as well as non-cancer cell lines and its potential to form self- aggregates in aqueous solution. Among these series of molecules, ACPOXF showed maximum toxicity in colorectal cancer cell line which are ER (-) but it also kills non-cancer cell line HEK-293, thereby reducing its cancer cell selectivity. Incidentally, ACPOXF exhibits self-aggregation, without the help of a co-lipid with nanometric size in aqueous solution. ACPOXF self-aggregate was co-formulated with glucocorticoid receptor (GR) synthetic ligand, dexamethasone (Dex) (called, ACPOXF-Dex aggregate) which could selectively kill ER (-) colorectal cancer cells and also could increase survivability of colon-tumour bearing mice. ACPOXF-Dex induced ROS up-regulation followed by apoptosis through expression of caspase-3. Further, we observed upregulation of antiproliferative factor, p53 and epithelial-to-mesenchymal (EMT) reversal marker E-cadherin in tumour mass. In conclusion, a typical structural modification in ER-targeting Oxifen moiety resulted in its self-aggregation that enabled it to carry a GR-ligand, thus broadening its selective antitumor property especially as colon cancer therapeutics.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Camundongos , Humanos , Animais , Ligantes , Células HEK293 , Antineoplásicos/farmacologia , Antineoplásicos/química , Apoptose , Receptores de Estrogênio/metabolismo , Oxindóis/química , Neoplasias Colorretais/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células
2.
J Photochem Photobiol B ; 251: 112846, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237432

RESUMO

Photodynamic therapy (PDT) is a clinically approved, non-invasive alternate cancer therapy. A synthetic glucocorticoid (GC), dexamethasone (Dex) has previously been demonstrated to sensitize cancer cells to chemotherapy. However, to the best of our knowledge, the sensitization effect of GCs on PDT has not yet been investigated. We hypothesized that glucocorticoid receptor (GR) targeting can selectively make cancer cells more sensitive to PDT treatment, as PDT induces hypoxia wherein GR-activity gets enhanced. In addition, Dex was reported to act against the PDT-induced cell survival pathways like HIF-1α, NRF2, NF-κB, STAT3 etc. Thus, both the treatments can complement each other and may result in increasing the effectiveness of combination therapy. Hence, in this study, we developed liposomal formulations of our previously reported PDT agent P-Nap, either alone (D1P-Nap) or in combination with Dex (D1XP-Nap) to elucidate the sensitization effect. Interestingly, our RT-PCR results in hypoxic conditions showed down-regulation of HIF-1α and over expression of GR-activated genes for glucose-6-phosphatase (G6Pase) and PEPCK enzymes, indicating prominent GR-transactivation. We also observed higher phototoxicity in CT26.WT cells treated with D1XP-Nap PDT under hypoxic conditions as compared to normoxic conditions. These effects were reversed when cells were pre-treated with RU486, a competitive inhibitor of GCs. Moreover, our in vivo findings of subcutaneous tumor model of Balb/C mice for colon cancer revealed a significant decrease in tumor volume as well as considerable enhancement in the survivability of PDT treated tumor-bearing mice when Dex was present in the formulation. A high Bax/Bcl-xL ratio, high p53 expression, enhanced E-cadherin expression and down-regulation of pro-tumorigenic transcription factors NF-κB and c-Myc were found in tumor lysates from mice treated with D1XP-Nap under PDT, indicating GR-mediated sensitization of the tumor to PDT-induced cell death and enhancement of life-span for tumor bearing mice.


Assuntos
Neoplasias do Colo , Fotoquimioterapia , Camundongos , Animais , Receptores de Glucocorticoides/metabolismo , NF-kappa B , Morte Celular , Neoplasias do Colo/tratamento farmacológico , Linhagem Celular Tumoral
3.
Biomed Mater ; 16(2): 024105, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33434900

RESUMO

High mortality rate in colon cancer patients is often attributed to late diagnosis. To overcome the conventional chemotherapy associated challenges, chemotherapeutic drugs (single or combination) or genetic drugs are often delivered using ligand-modified delivery systems that selectively target over expressed receptors or particular receptors that act abnormally in cancer cells. In the current investigation, first we assessed anti-colon cancer effect of a cationic estrogenic molecule, ESC8 which was earlier shown to act against estrogen receptor (ER) ± breast cancer cells. We found that against both colon and breast cancer cells the anticancer activity is intervened by AMPK-mTOR pathway and at the same time it acts as anti-angiogenic agent. It also showed enhancement of mesenchymal-to-epithelial (MET) transition as well as reduction of cyclin D in both cells. Earlier we demonstrated the use of glucocorticoid receptor (GR) targeted cationic liposomal delivery system carrying anti-Hsp90 plasmid and ESC8 to act as potent anti-skin cancer therapeutics. As ESC8 demonstrated anti-colon cancer effect in vitro, in here, we used the same GR-targeted liposomal formulation but carrying a more fusogenic cationic lipid D1 and used against colon tumor orthotopic model in mice. We show that GR targeted formulation (D1XE-Hsp90) exhibited efficient cellular uptake, transfection and selective cytotoxicity in colon cancer cells, tumor-targeted bio-distribution and enhanced survivability, reduced tumor size in orthotopic colon tumor-bearing mice. The tumor sections exhibited reduced tumor proliferation as well as neo-vascularization, thus supporting the holistic antitumor effect of the D1XE-Hsp90 formulation. Over all our results establish the GR-targeted D1XE-Hsp90 formulation as potent anti-colon cancer therapeutics.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias do Colo/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Estradiol/análogos & derivados , Proteínas de Choque Térmico HSP90/química , Lipossomos/química , Receptores de Glucocorticoides/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Embrião de Galinha , Ensaios de Seleção de Medicamentos Antitumorais , Estradiol/administração & dosagem , Estradiol/farmacologia , Feminino , Humanos , Concentração Inibidora 50 , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...