Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 27(10): 276, 2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34480634

RESUMO

Rimegepant is a new medicine developed for the management of chronic headache due to migraine. This manuscript is an attempt to study the various structural, physical, and chemical properties of the molecules. The molecule was optimized using B3LYP functional with 6-311G + (2d,p) basis set. Excited state properties of the compound were studied using CAM-B3LYP functional with same basis sets using IEFPCM model in methanol for the implicit solvent atmosphere. The various electronic descriptors helped to identify the reactivity behavior and stability. The compound is found to possess good nonlinear optical properties in the gas phase. The various intramolecular electronic delocalizations and non-covalent interactions were analyzed and explained. As the compound contain several heterocyclic nitrogen atoms, they have potential proton abstraction features, which was analyzed energetically. The most important result from this study is from the molecular docking analysis which indicates that rimegepant binds irreversibly with three established SARS-CoV-2 proteins with ID 6LU7, 6M03, and 6W63 with docking scores - 9.2988, - 8.3629, and - 9.5421 kcal/mol respectively. Further assessment of docked complexes with molecular dynamics simulations revealed that hydrophobic interactions, water bridges, and π-π interactions play a significant role in stabilizing the ligand within the binding region of respective proteins. MMGBSA-free energies further demonstrated that rimegepant is more stable when complexed with 6LU7 among the selected PDB models. As the pharmacology and pharmacokinetics of this molecule are already established, rimegepant can be considered as an ideal candidate with potential for use in the treatment of COVID patients after clinical studies.


Assuntos
Simulação de Dinâmica Molecular , Piperidinas/química , Prótons , Piridinas/química , SARS-CoV-2/química , Proteínas Virais/química , SARS-CoV-2/metabolismo , Proteínas Virais/metabolismo
2.
J Mol Liq ; 325: 114765, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33746318

RESUMO

Cancer of the lungs and thyroid is particularly difficult to manage and treat. Notably, selpercatinib has recently been suggested as an effective drug to combat these diseases. The entire world is currently tackling the pandemic caused by the SARS-CoV-19 virus. Numerous pharmaceuticals have been evaluated for the management of the disease caused by SARS-CoV-19 (i.e., COVID-19). In this study, selpercatinib was proposed as a potential inhibitor of different SARS-CoV-19 proteins. Several intriguing effects of the molecule were found during the conducted computational investigations. Selpercatinib could effectively act as a proton sponge and exhibited high proton affinity in solution. Moreover, it was able to form complexes with metal ions in aqueous solutions. Specifically, the compound displayed high affinity towards zinc ions, which are important for the prevention of virus multiplication inside human cells. However, due to their charge, zinc ions are not able to pass the lipid bilayer and enter the cell. Thus, it was determined that selpercatinib could act as an ionophore, effectively transporting active zinc ions into cells. Furthermore, various quantum mechanical analyses, including energy studies, evaluation of the reactivity parameters, examination of the electron localisation and delocalisation properties, as well as assessment of the nonlinear optical (NLO) properties and information entropy, were conducted herein. The performed docking studies (docking scores -9.3169, -9.1002, -8.1853 and -8.1222 kcal mol-1) demonstrated that selpercatinib strongly bound with four isolated SARS-CoV-2 proteins.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 254: 119630, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33684853

RESUMO

The nanocluster-based drug delivery system is of much importance, now days. This manuscript studies the interaction of pristine/substituted/doped GQDs, fullerene, helicene and CNT with bempedoic acid, which is an effective alternative of statins in the treatment of hypercholesteremia. The adsorption energies are calculated at B3LYP-D3/6-311G+(2d,p) level in order to study the adsorption of bempedoic acid over the surfaces of the nanoclusters incorporating Grimme's dispersion correction. Surface enhanced Raman scattering (SERS), which is a sound approach to vibrational spectroscopy, is used in order to detect bempedoic acid. All the studies signify that bempedoic acid can be detected with these nanoclusters and the negative adsorption energies advocate for the possible use of these nanoclusters as effective drug delivery system in case of bempedoic acid. Adsorption energy of bempedoic acid over helicene was found to be the most negative among the mentioned nanocluster systems, while adsorption on the surface of CNT was found to be the least negative.


Assuntos
Preparações Farmacêuticas , Adsorção , Ácidos Dicarboxílicos , Ácidos Graxos , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...