Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38767841

RESUMO

The eminence of transitioning from traditional fossil fuel-based energy resources to renewable and sustainable energy sources is most evidently crucial. The potential of hydrogen as an alternative energy source has specifically focuses the electrocatalytic water splitting (EWS) as a promising technique for generating hydrogen. Development of efficient electrocatalysts to facilitate the EWS process while rationalizing the limitations of noble metal catalysts like platinum has become one of the daunting tasks. Consequently, porous functional materials such as metal complexes (MCs) and graphene oxide (GO) can act as potential catalysts for EWS. Therefore, a composite of GO and a mononuclear bismuth metal complex is synthesized through in situ facile synthesis, which is further utilized as an efficient electrocatalyst for the hydrogen evolution reaction (HER). Several potential electrocatalytic MC@GO composite (BMGO-3,5,7) materials were prepared with compositional variation of GO (3, 5, and 7 wt %). The experimental results demonstrate that the BMGO5 composite exhibits excellent HER activity with a low overpotential value of 105 mV at 10 mA cm-2 and a low Tafel slope of 44 mV dec-1 in 1 M KOH solution. Furthermore, a comprehensive investigation on the potentiality of the BMC-GO composite for hydrogen evolution from river water splitting was performed in order to address the issue of freshwater depletion. Inclusion of a mononuclear MC for facile synthesis of functional GO-based efficient electrocatalyst material is very scanty in the literature. This unique approach could assist future research endeavors toward designing efficient electrocatalysts for sustainable renewable energy generation. This is one of the first of its kind, where mononuclear MCs were utilized to develop GO-based functional composite materials for efficient electrocatalysis toward sustainable renewable energy generation.

2.
ACS Appl Mater Interfaces ; 16(17): 22066-22078, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629710

RESUMO

Development of crystalline porous materials for selective CO2 adsorption and storage is in high demand to boost the carbon capture and storage (CCS) technology. In this regard, we have developed a ß-keto enamine-based covalent organic framework (VM-COF) via the Schiff base polycondensation technique. The as-synthesized VM-COF exhibited excellent thermal and chemical stability along with a very high surface area (1258 m2 g-1) and a high CO2 adsorption capacity (3.58 mmol g-1) at room temperature (298 K). The CO2/CH4 and CO2/H2 selectivities by the IAST method were calculated to be 10.9 and 881.7, respectively, which were further experimentally supported by breakthrough analysis. Moreover, theoretical investigations revealed that the carbonyl-rich sites in a polymeric backbone have higher CO2 binding affinity along with very high binding energy (-39.44 KJ mol-1) compared to other aromatic carbon-rich sites. Intrigued by the best CO2 adsorption capacity and high CO2 selectivity, we have utilized the VM-COF for biogas purification produced by the biofermentation of municipal waste. Compared with the commercially available activated carbon, VM-COF exhibited much better purification ability. This opens up a new opportunity for the creation of functionalized nanoporous materials for the large-scale purification of waste-generated biogases to address the challenges associated with energy and the environment.

3.
Dalton Trans ; 53(7): 3010-3019, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38265230

RESUMO

Mitochondrial topisomerase 1 (Top1mt) is critical for mtDNA replication, transcription, and energy production. Here, we investigate the carrier-mediated targeted delivery of the anticancer drug irinotecan into the mitochondria to selectively trap Top1mt covalent complexes (Top1mtcc) and its role in anticancer therapeutics. We have designed a biocompatible mesoporous metal-organic framework (MOF) material, namely MIL-101(Fe), as the drug delivery carrier that selectively localizes inside mitochondria. In contrast to the traditional way of synthesising MOFs, here we have employed a vapour-assisted solvothermal method for the synthesis of MIL-101(Fe) using terephthalic acid as the organic linker and Fe(III) as the metal source. The advantage of this method is that it recycles the excess solvent (DMF) and reduces the amount of washing solvent. We demonstrate that MIL-101(Fe)-encapsulated irinotecan (MIL-Iri) was selectively targeted towards the mitochondria to poison Top1mtcc in a dose-dependent manner and was achieved at a low nanomolar drug concentration. We provide evidence that Top1mtcc generated by MIL-Iri leads to mtDNA damage in human colon and breast cancer cells and plays a significant role in cellular toxicity. Altogether, this study provides evidence for a new and effective strategy in anticancer chemotherapy.


Assuntos
Estruturas Metalorgânicas , Humanos , Irinotecano/farmacologia , Compostos Férricos , Portadores de Fármacos , Mitocôndrias , DNA Mitocondrial , Solventes
4.
ACS Sens ; 9(1): 251-261, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38207113

RESUMO

Developing suitable sensors for selective and sensitive detection of volatile organic compounds (VOCs) is crucial for monitoring indoor and outdoor air quality. VOCs are very harmful to our health upon inhalation or contact. Bimodal sensor materials with more than one transduction capability (optical and electrical) offer the ability to extract complementary information from the individual analyte, thus improving detection accuracy and performance. The privilege of manipulating the optoelectronic properties of the polycyclic aromatic hydrocarbon-based semiconducting materials offers rapid signal transduction in multimodal sensing applications. A thiophene-functionalized triazacoronene (TTAC) donor-acceptor-donor (D-A-D) type sensor is reported here for VOC sensing. The single-crystal X-ray structure analysis of the TTAC revealed that a distinctive supramolecular polymer architecture was formed because of cooperative π-π and intermolecular D-A interactions and exhibited rapid signal transduction upon exposure to specific VOCs. The TTAC-embedded green luminescent paper-based test strip exhibited an on-off fluorescence response upon nitrobenzene vapor exposure for 120 s. The selective and rapid response is due to the fast photoinduced electron transfer, as is evident from the time-resolved excited-state dynamics and density functional theory studies. The thick-film-based prototype chemiresistive sensor detects harmful VOCs in a custom-made gas sensing system including benzene, toluene, and nitrobenzene. The TTAC sensor rapidly responds (200 s) at relatively low temperatures (180 οC) compared to other reported metal-oxide-based sensors.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Metais , Luminescência , Tolueno , Nitrobenzenos
5.
Chem Asian J ; 19(4): e202300933, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38241138

RESUMO

The emergence of non-precious metal-based robust and economic bifunctional oxygen electrocatalysts for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for the rational design of commercial rechargeable Zn-air batteries (RZAB) with safe energy conversion and storage systems. Herein, a facile strategy to fabricate a cost-efficient, bifunctional oxygen electrocatalyst Fe3 C/Fe decorated N doped carbon (FeC-700, the catalyst prepared at carbinization temperature of 700 °C) with a unique structure has been developed by carbonization of a single source precursor, tetrabutylammonium tetrachloroferrate(III) complex. The ORR and OER activity revealed excellent performance (ΔE=0.77 V) of the FeC-700 electrocatalyst, comparable to commercial Pt/C and RuO2, respectively. The designed temperature-tuneable structure provided sufficiently accessible active sites for the continuous passage of electrons by shortening the mass transfer pathway, leading to extremely durable electrocatalysts with high ECSA and amazing charge transfer performance. Remarkably, the assembled Zn-air batteries with the FeC-700 catalyst as the bifunctional air electrode delivers gratifying charging-discharging ability with an impressive power density of 134 mW cm-2 with a long lifespan, demonstrating prodigious possibilities for practical application.

6.
J Colloid Interface Sci ; 658: 415-424, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38118188

RESUMO

Water splitting is a long-standing quest to material research for mitigating the global energy crisis. Despite high efficiency shown by several high cost noble metal containing electrocatalysts in the water splitting reaction, scientists are focused on alternate metal-free carbon or polymer based materials with comparable activity to make the process economical. In this article, we have strategically designed a noble metal-free thiadiazole (TDA) and triazine (Trz) linked porous organic polymer (TDA-Trz-POP) having N- and S-rich surface. Powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR), solid state 13C magic angle spinning nuclear magnetic resonance (MAS-NMR) and X-ray photoelectron spectroscopic (XPS) analyses have been performed to predict its probable framework structure. This scrunch paper type TDA-Trz-POP shows an extravagant potential for the hydrogen evolution reaction (HER) with a low overpotential (129.2 mV w.r.t. RHE for 10 mA cm-2 current density) and low Tafel slope (82.1 mV deg-1). Again, this metal-free catalyst shows oxygen evolution reaction (OER) at 410 mV overpotential w.r.t RHE for 10 mA cm-2 current density with a lower Tafel slope of 104.5 mV deg-1. This bifunctional activity was further tested in two electrodes set-up under different pH conditions. The porosity seems to be a blessing in the electrocatalytic performance of this metal-free electrocatalyst material. Further, the mystery behind the activity of both HER and OER has been resolved through the density functional theory (DFT) analysis. This work provides an insight to the material scientists for low cost, metal-free material design for the efficient water splitting reaction.

7.
ACS Appl Mater Interfaces ; 15(41): 48326-48335, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37788172

RESUMO

A large number of scientific investigations are needed for developing a sustainable solid sorbent material for precombustion CO2 capture in the integrated gasification combined cycle (IGCC) that is accountable for the industrial coproduction of hydrogen and electricity. Keeping in mind the industrially relevant conditions (high pressure, high temperature, and humidity) as well as good CO2/H2 selectivity, we explored a series of sorbent materials. An all-rounder player in this game is the porous organic polymers (POPs) that are thermally and chemically stable, easily scalable, and precisely tunable. In the present investigation, we successfully synthesized two nitrogen-rich POPs by extended Schiff-base condensation reactions. Among these two porous polymers, TBAL-POP-2 exhibits high CO2 uptake capacity at 30 bar pressure (57.2, 18.7, and 15.9 mmol g-1 at 273, 298, and 313 K temperatures, respectively). CO2/H2 selectivities of TBAL-POP-1 and 2 at 25 °C are 434.35 and 477.93, respectively. On the other hand, at 313 K the CO2/H2 selectivities of TBAL-POP-1 and 2 are 296.92 and 421.58, respectively. Another important feature to win the race in the search of good sorbents is CO2 capture capacity at room temperature, which is very high for TBAL-POP-2 (15.61 mmol g-1 at 298 K for 30 to 1 bar pressure swing). High BET surface area and good mesopore volume along with a large nitrogen content in the framework make TBAL-POP-2 an excellent sorbent material for precombustion CO2 capture and H2 purification.

8.
J Mater Chem B ; 11(37): 8956-8965, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37671527

RESUMO

Nanozymes, i.e., nanomaterials that possess intrinsic enzyme-like behaviour, have thrived over the past few decades owing to their advantages of superior stability and effortless storage. Such artificial enzymes can be a perfect alternative to naturally occurring enzymes, which have disadvantages of high cost and limited functionality. In this work, we present the fabrication of an Fe(III)-incorporated porphyrin-based conjugated organic polymer as a nanozyme for the efficient detection of glucose through its intrinsic peroxidase activity and the amperometric detection of hydrogen peroxide. The iron-incorporated porphyrin-based conjugated organic polymer (Fe-DMP-POR) possesses a spherical morphology with high chemical and thermal stability. Exploiting the peroxidase-mimicking activity of the material for the determination of glucose, a detection limit of 4.84 µM is achieved with a linear range of 0-0.15 mM. The Fe-DMP-POR also exhibits a reasonable recovery range for the detection of human blood glucose. The as-synthesized material can also act as an H2O2 sensor, with a sensitivity of 947.67 µA cm-2 mM-1 and a limit of detection of 3.16 µM.

9.
Inorg Chem ; 62(32): 12832-12842, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37527444

RESUMO

Methanol oxidation reaction (MOR) is a perfect alternative to the conventional oxygen evolution reaction (OER), generally utilized as the anode reaction for hydrogen generation via the electrochemical water splitting method. Moreover, MOR is also relevant to direct methanol fuel cells (DMFCs). These facts motivate the researchers to develop economical and efficient electrocatalysts for MOR. Herein, we have introduced an ethylene glycol-linked tetraphenyl porphyrin-based (EG-POR) covalent organic polymer (COP). The Ni(II)-incorporated EG-POR material Ni-EG-POR displayed excellent OER and MOR activities in an alkaline medium. The materials were thoroughly characterized using 13C solid-state NMR, Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) surface area analyzer, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), and powder X-ray diffraction (PXRD) techniques. These organic-inorganic hybrid materials showed high chemical and thermal stability. Ni-EG-POR requires an overpotential of 400 mV (vs RHE) in OER and 190 mV (vs RHE) in MOR to achieve a current density of 10 mA cm-2. In addition, the catalyst also showed excellent chronoamperometric and chronopotentiometric stability, indicating that the catalyst can provide stable current over a longer period and its potential as a non-noble metal MOR catalyst.

10.
Inorg Chem ; 62(29): 11426-11435, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37418702

RESUMO

Sulfite (SO32-) is considered a highly toxic anion for living organisms. Herein, we report the synthesis of copper immobilized over a 2D hexagonally ordered mesoporous silica material CuMS as an electrochemical and colorimetric dual-technique-based sensing platform for sulfite detection. The immobilization of copper on silica was achieved through the bis[3-(triethoxysilyl)propyl]tetrasulfide (TEPTS) ligand. Morphological and physical properties of the material were confirmed by several characterization techniques, including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, N2 sorption, and X-ray photoelectron spectroscopy. The CuMS material retained mesoporosity with a narrow pore size distribution (D ≈ 5.4 nm) and a high Brunauer-Emmett-Teller surface area of 682 m2 g-1 after the immobilization of copper. The prepared catalyst shows promising electrocatalytic activity toward sulfite oxidation. A linear variation in the peak current was obtained for SO32- oxidation in the 0.2-15 mM range with a high sensitivity of 62.08 µA cm-2, under optimum experimental conditions. The limit of detection (LOD) was found to be 1.14 nM. CuMS also shows excellent activity toward colorimetric detection of sulfite anions with an LOD of 0.4 nM. The proposed sensor shows high selectivity toward the sulfite anion, even in the presence of common interferents. The detection of sulfite in white wine with excellent recovery demonstrates the practical applicability of this sensor.

11.
Chem Commun (Camb) ; 59(34): 5067-5070, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37021353

RESUMO

We have introduced a Friedel-Crafts alkylation strategy of a Ni-salphen complex as derived from 2-hydroxy-5-methoxybenzaldehyde, an isomer of biomass derived vanillin, to construct a Ni-salphen based porous organic polymer (Ni@T-POP). The X-ray absorption spectroscopy (XAS) analysis revealed the existence of Ni-N2O2 core sites in the Ni@T-POP framework, which demonstrates unprecedented catalytic efficiency towards oxidative decontamination of sulfur mustards (HD's) compared to its complex precursor.

12.
Langmuir ; 39(11): 4071-4081, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36905363

RESUMO

Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via segregation of donor-acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer-Emmett-Teller (BET) surface area of 1058 m2 g-1 with a pore volume of 0.73 cc g-1. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C6-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min-1. Further, C6-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g-1.

13.
Artigo em Inglês | MEDLINE | ID: mdl-36893380

RESUMO

A water-stable, microporous, luminescent Ni(II)-based metal-organic framework (MOF) (Ni-OBA-Bpy-18) with a 4-c uninodal sql topology was solvothermally synthesized using mixed N-, O-donor-directed π-conjugated co-ligands. The extraordinary performance of this MOF toward rapid monitoring of mutagenic explosive trinitrophenol (TNP) in aqueous and vapor phases by the fluorescence "Turn-off" technique with an ultralow detection limit of 66.43 ppb (Ksv: 3.45 × 105 M-1) was governed by a synchronous occurrence of photoinduced electron transfer-resonance energy transfer-intermolecular charge transfer (PET-RET-ICT) and non-covalent π···π weak interactions, as revealed from density functional theory studies. The recyclable nature of the MOF, detection from complex environmental matrices, and fabrication of a handy MOF@cotton-swab detection kit certainly escalated the on-field viability of the probe. Interestingly, the presence of electron-withdrawing TNP decisively facilitated the redox events of the reversible NiIII/II and NiIV/III couples under an applied voltage based on which electrochemical recognition of TNP was realized by the Ni-OBA-Bpy-18 MOF/glassy carbon electrode, with an excellent detection limit of ∼0.6 ppm. Such detection of a specific analyte by MOF-based probe via two divergent yet coherent techniques is unprecedented and yet to be explored in relevant literature.

14.
ACS Omega ; 8(5): 4566-4577, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777585

RESUMO

Carbon dots (CQDs) have been widely investigated as prime candidates for developing a tumor theranostic platform due to their tunable fluorescence emission and excitation, high water solubility, good photostability, and biocompatibility. Among the CQDs, natural CQDs are an emerging class of nanomaterials in the carbon family. Herein, highly fluorescent carbon quantum dots (CQDs) were synthesized from orange juice using a one-step hydrothermal method and characterized by different techniques. After that, CQD/Ag heterostructures were synthesized by the reduction of silver salt, in particular silver nitrate (AgNO3) solution using sodium borohydride (NaBH4) in different ratios. The photostability and characterization of CQD/Ag heterostructures were investigated. At last, a comparative cellular toxicity measurement was done to select the superior CQD/Ag heterostructure in the human colorectal carcinoma (HCT 116) cell line along with the imaging property. The detailed cell death signaling was also observed in the HCT 116 cell line via the ROS-dependent mitochondrial-mediated pathway, where Akt (RAC-α serine/threonine-protein kinase) played a important role.

15.
Chem Asian J ; 18(1): e202200970, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36373678

RESUMO

Herein, we have designed and synthesized two heteroatom (N, O) rich covalent organic frameworks (COF), PD-COF and TF-COF, respectively, to demonstrate their relative effect on CO2 adsorption capacity and also CO2 /N2 selectivity. Compared to the non-fluorinated PD-COF (BET surface area 805 m2 g-1 , total pore volume 0.3647 ccg-1 ), a decrease in BET surface area and also pore volume have been observed for fluorinated TF-COF due to the incorporation of fluorine to the porous framework (BET surface area 451 m2 g-1 , total pore volume 0.2978 ccg-1 ). This fact leads to an enormous decrease in the CO2 adsorption capacity and CO2 /N2 selectivity of TF-COF, though it shows stronger affinity towards CO2 with a Qst of 37.76 KJ/mol. The more CO2 adsorption capacity by PD-COF can be attributed to the large specific surface area with considerable amount of micropore volume compared to the TF-COF. Further, PD-COF exhibited CO2 /N2 selectivity of 16.8, higher than that of TF-COF (CO2 /N2 selectivity 13.4).

16.
Inorg Chem ; 61(46): 18390-18399, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36351189

RESUMO

The urea oxidation reaction (UOR) is an excellent alternative to the sluggish oxygen evolution reaction (OER) as an anode reaction for hydrogen generation via electrochemical water splitting. Here, a porphyrin-based conjugated porous polymer (CPP) has been developed through the polycondensation reaction of 2,6-diformyl-4-methylphenol and pyrrole (DMP-POR). The nickel(II) complex of this conjugated polymer Ni-DMP-POR shows efficient UOR in an alkaline medium. The as-synthesized materials were characterized by solid-state 13C CP-MAS, thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The porous property of the materials was characterized by N2 adsorption/desorption isotherms at 77 K. Both DMP-POR and Ni-DMP-POR showed excellent thermal stability. The Ni-DMP-POR exhibits very good UOR in 1 M KOH and 0.33 M urea with an overpotential of 260 mV at 10 mA cm-2 and a Tafel slope of 48 mV dec-1. The catalyst also shows excellent chronoamperometric and chronopotentiometric stability, suggesting its future scope in sustainable hydrogen production from wastewater resources.


Assuntos
Porfirinas , Porosidade , Ureia , Polímeros , Espectroscopia de Infravermelho com Transformada de Fourier , Fenóis , Hidrogênio
17.
ACS Appl Mater Interfaces ; 14(45): 50913-50922, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36326441

RESUMO

Visible light-mediated photoredox catalysis has emerged to be a fascinating approach for the activation of CO2 and its subsequent fixation into valuable chemicals utilizing renewable and inexhaustible solar energy. Although great progress has been made in CO2 photoreduction, visible light-assisted organic synthesis using CO2 as a reactive substrate is rarely explored. Herein, we report an efficient, facile, and economically viable photoredox-mediated approach for the synthesis of important ß-thioacids via carboxylation of olefins with CO2 and thiols over a porous functionalized metal-organic framework (MOF), Fe-MIL-101-NH2, as a photocatalyst under ambient conditions. This multicomponent reaction offers wide substrate scope, mild reaction conditions, easy work-up, cost-effective and reusable photocatalysts, and higher product selectivity. Computational studies suggested that CO2 interacts with the thiophenol-styrene adduct to facilitate the synthesis of ß-thioacids in almost quantitative yields.

18.
Molecules ; 27(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36364150

RESUMO

N-rich organic materials bearing polyphenolic moieties in their building networks and nanoscale porosities are very demanding in the context of designing efficient biomaterials or drug carriers for the cancer treatment. Here, we report the synthesis of a new triazine-based secondary-amine- and imine-linked polyphenolic porous organic polymer material TrzTFPPOP and explored its potential for in vitro anticancer activity on the human colorectal carcinoma (HCT 116) cell line. This functionalized (-OH, -NH-, -C=N-) organic material displayed an exceptionally high BET surface area of 2140 m2 g-1 along with hierarchical porosity (micropores and mesopores), and it induced apoptotic changes leading to high efficiency in colon cancer cell destruction via p53-regulated DNA damage pathway. The IC30, IC50, and IC70 values obtained from the MTT assay are 1.24, 3.25, and 5.25 µg/mL, respectively.


Assuntos
Neoplasias Colorretais , Polímeros , Humanos , Porosidade , Polímeros/farmacologia , Células HCT116 , Portadores de Fármacos , Neoplasias Colorretais/tratamento farmacológico
19.
Nanoscale Adv ; 4(10): 2313-2320, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-36133695

RESUMO

Cancer, one of the deadliest diseases for both sexes, has always demanded updated treatment strategies with time. Breast cancer is responsible for the highest mortality rate among females worldwide and requires treatment with advanced regimens due to the higher probability of breast cancer cells to develop drug cytotoxicity followed by resistance. Covalent organic framework (COF) materials with ordered nanoscale porosity can serve as drug delivery vehicles due to their biocompatible nature and large internal void spaces. In this research work, we have employed a novel biocompatible COF, TRIPTA, as a drug delivery carrier towards breast cancer cells. It served as a drug delivery vehicle for cisplatin in triple negative breast cancer (TNBC) cells. We have checked the potency of TRIPTA in combating the proliferation of metastatic TNBC cells. Our results revealed that cisplatin loaded over TRIPTA-COF exhibited a greater impact on the CD44+/CD24- cancer stem cell niche of breast cancer. Retarded migration of cancer cells has also been observed with the dual treatment of TRIPTA and cisplatin compared to that of cisplatin alone. Epithelial-mesenchymal transition (EMT) has also been minimized by the combinatorial treatment of cisplatin carried by the carrier material in comparison to cisplatin alone. The epithelial marker E-cadherin is significantly increased in cells treated with cisplatin together with the carrier COF, and the expression of mesenchymal markers such as N-cadherin is lower. The transcriptional factor Snail has been observed under the same treatment. The carrier material is also internalized by the cancer cells in a time-dependent manner, suggesting that the organic carrier can serve as a specific drug delivery vehicle. Our experimental results suggested that TRIPTA-COF can serve as a potent nanocarrier for cisplatin, showing higher detrimental effects on the proliferation and migration of TNBC cells by increasing the cytotoxicity of cisplatin.

20.
ACS Appl Mater Interfaces ; 14(33): 37699-37708, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960025

RESUMO

Designing an efficient catalyst for a sustainable photoelectrochemical water oxidation reaction is very challenging in the context of renewable energy research. Here, we have introduced a new semiconducting porous zinc-thiolate framework via successful stitching of an "N" donor linker with a triazine-based tristhiolate secondary building unit in the overall architecture. The introduction of both linker and tristhiolate ligand synergistically modifies the architecture by making it a rigid, crystalline, three-dimensional, thermally stable, and porous framework. Our novel zinc-thiolate framework is used as an n-type semiconductor as revealed from the solid-state UV-vis DRS spectroscopic analysis, ac and dc conductivity analysis, and Mott-Schottky plot. This n-type semiconductor-based zinc-thiolate framework is utilized in the photoelectrochemical water oxidation reaction. It displayed a very high efficiency for a visible-light-driven oxygen evolution reaction (OER) in a KOH medium using standard Ag/AgCl as the reference electrode. The superiority of this material was further revealed from the low onset potential (0.822 mV vs RHE), high photocurrent density (0.204 mA cm-2), good stability, and high O2 evolution rate (77 µmol g-1 of oxygen evolution within 2 h), and a good efficiency (ABPE 0.42%, IPCE 29.6% and APCE 34.5%). Furthermore, the porosity in the overall framework seems to be a blessing to the photoelectrochemical performance due to better mass diffusion of the electrolyte. A detailed mechanism for the OER reaction was analyzed through density functional theory analysis suggesting the potential future of this Zn-thiolate framework for achieving a high efficiency in the sustainable water oxidation reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...