Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Rev ; 11(4): 603-609, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31342264

RESUMO

Cryo-electron microscopy and single-particle image analysis are frequently used methods for macromolecular structure determination. Conventional single-particle analysis, however, usually takes advantage of inherent sample symmetries which assist in the calculation of the structure of interest (such as viruses). Many viruses assemble an icosahedral capsid and often icosahedral symmetry is applied during structure determination. Symmetry imposition, however, results in the loss of asymmetric features of the virus. Here, we provide a brief overview of the methods used to investigate non-symmetric capsid features. These include the recently developed focussed classification as well as more conventional methods which simply do not impose any symmetry. Asymmetric single-particle image analysis can reveal novel aspects of virus structure. For example, the VP4 capsid spike of rotavirus is only present at partial occupancy, the bacteriophage MS2 capsid contains a single copy of a maturation protein and some viruses also encode portals or portal-like assemblies for the packaging and/or release of their genome upon infection. Advances in single-particle image reconstruction methods now permit novel discoveries from previous single-particle data sets which are expanding our understanding of fundamental aspects of virus biology such as viral entry and egress.

2.
J Mol Biol ; 399(1): 71-93, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20361979

RESUMO

Mammalian pyruvate dehydrogenase complex (PDC) is a key multi-enzyme assembly that is responsible for glucose homeostasis maintenance and conversion of pyruvate into acetyl-CoA. It comprises a central pentagonal dodecahedral core consisting of two subunit types (E2 and E3BP) to which peripheral enzymes (E1 and E3) bind tightly but non-covalently. Currently, there are two conflicting models of PDC (E2+E3BP) core organisation: the 'addition' model (60+12) and the 'substitution' model (48+12). Here we present the first ever low-resolution structures of human recombinant full-length PDC core (rE2/E3BP), truncated PDC core (tE2/E3BP) and native bovine heart PDC core (bE2/E3BP) obtained by small-angle X-ray scattering and small-angle neutron scattering. These structures, corroborated by negative-stain and cryo electron microscopy data, clearly reveal open pentagonal core faces, favouring the 'substitution' model of core organisation. The native and recombinant core structures are all similar to the truncated bacterial E2 core crystal structure obtained previously. Cryo-electron microscopy reconstructions of rE2/E3BP and rE2/E3BP:E3 directly confirm that the core has open pentagonal faces, agree with scattering-derived models and show density extending outwards from their surfaces, which is much more structurally ordered in the presence of E3. Additionally, analytical ultracentrifugation characterisation of rE2/E3BP, rE2 (full-length recombinant E2-only) and tE2/E3BP supports the substitution model. Superimposition of the small-angle neutron scattering tE2/E3BP and truncated bacterial E2 crystal structures demonstrates conservation of the overall pentagonal dodecahedral morphology, despite evolutionary diversity. In addition, unfolding studies using circular dichroism and tryptophan fluorescence spectroscopy show that the rE2/E3BP is less stable than its rE2 counterpart, indicative of a role for E3BP in core destabilisation. The architectural complexity and lower stability of the E2/E3BP core may be of benefit to mammals, where sophisticated fine-tuning is required for cores with optimal catalytic and regulatory efficiencies.


Assuntos
Complexo Piruvato Desidrogenase/química , Sequência de Aminoácidos , Sítios de Ligação , Microscopia Crioeletrônica , Humanos , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Alinhamento de Sequência
3.
J Mol Biol ; 295(2): 155-61, 2000 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-10623515

RESUMO

All members of the herpesvirus family have a characteristic virion structure, comprising a DNA containing, icosahedral capsid, embedded in a proteinaceous layer (tegument) and surrounded by a lipid envelope. Human cytomegalovirus (HCMV, the prototypic beta-herpesvirus) has a genome that is significantly larger (>50 %) than that of the alpha-herpesvirus HSV-1. Although the internal volume of the HCMV capsid is approximately 17 % larger than that of HSV-1, this slight increase in volume does not provide adequate space to encapsidate the full length HCMV genome at the same packing density as HSV-1. We have investigated the nature of DNA packing in HCMV and HSV-1 virions by electron-cryomicroscopy and image processing. Radial density profiles calculated from projection images of HCMV and HSV-1 capsids suggest that there is no increase in the volume of the HCMV capsid upon DNA packaging. Packing density of the viral DNA was assessed for both HCMV and HSV-1 by image analysis of both full and empty particles. Our results for packing density in HSV-1 are in good agreement with previously published measurements, showing an average inter-layer spacing of approximately 26 A. Measurements taken from our HCMV images, however, suggest that the viral genomic DNA is more densely packed, with an average inter-layer spacing of approximately 23 A. We propose therefore, that the combination of greater volume in HCMV capsids and increased packing density of viral DNA accounts for its ability to encapsidate a large genome.


Assuntos
Citomegalovirus/genética , DNA Viral/genética , Herpesvirus Humano 1/genética , Microscopia Eletrônica/métodos , Vírion/genética , Citomegalovirus/ultraestrutura , Genoma Viral , Vírion/ultraestrutura
4.
J Mol Biol ; 292(1): 65-73, 1999 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-10493857

RESUMO

The virus-like particles (VLPs) produced by the yeast Ty retrotransposons are structurally and functionally related to retroviral cores. Using cryo-electron microscopy (cryo-EM) and three-dimensional (3D) reconstruction, we have examined the structures of VLPs assembled from full-length and truncated forms of the capsid structural protein. The VLPs are highly polydisperse in their radius distribution. We have found that the length of the C-terminal region of the capsid structural protein dictates the T -number, and thus the size, of the assembled particles. Each construct studied appears to assemble into at least two or three size classes, with shorter C termini giving rise to smaller particles. This assembly property provides a model for understanding the variable assembly of retroviral core proteins. The particles are assembled from trimer-clustered units and there are holes in the capsid shells.


Assuntos
Retroelementos/genética , Saccharomyces cerevisiae/genética , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Proteínas Fúngicas/genética , Processamento de Imagem Assistida por Computador , Tamanho da Partícula , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA