Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(20): 7703-7715, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37163305

RESUMO

The zeolitic imidazolate framework, ZIF-4, exhibits soft porosity and is known to show pore volume changes with temperatures, pressures, and guest adsorption. However, the mechanism and adsorption behavior of ZIF-4 are not completely understood. In this work, we report an open to narrow pore transition in ZIF-4 around T ∼ 253 K upon lowering the temperature under vacuum (10-6 Torr) conditions, facilitated by C-H···π interactions. In the gaseous environment of N2 and CO2 around the framework, characteristic Raman peaks of adsorbed gases were observed under ambient conditions of 293 K and 1 atm. A guest-induced transition at ∼153 K resulting in the opening of new adsorption sites was inferred from the Raman spectral changes in the C-H stretching modes and low-frequency modes (<200 cm-1). In contrast to a single vibrational mode generally reported for entrapped N2, we show three Raman modes of adsorbed N2 in ZIF-4. The adsorption is facilitated by dispersive and quadrupolar interactions. From our temperature-dependent Raman results and theoretical analysis based on the density functional tight-binding approach, we conclude that the C-Hs are the preferred adsorption sites on ZIF-4 in the following order: C4-H, C5-H > C2-H > center of the Im ring (interacting with C-H centers) > center of the cavity. We also show that with an increasing concentration of N2 adsorbed at low temperatures, the ZIF-4 structure undergoes shear distortion of the window formed by 4-imidazole rings and consequent volumetric expansion. Our results have immediate implications in the field of porous materials and could be vital in identifying subtle structural transformations that may favor or hinder guest adsorption.

2.
ACS Appl Mater Interfaces ; 15(4): 5086-5098, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669233

RESUMO

High-performance energy storage devices (HPEDs) play a critical role in the realization of clean energy and thus enable the overarching pursuit of nonpolluting, green technologies. Supercapacitors are one class of such lucrative HPEDs; however, a serious limiting factor of supercapacitor technology is its sub-par energy density. This report presents hitherto unchartered pathway of physical deformation, chemical dealloying, and microstructure engineering to produce ultrahigh-capacitance, energy-dense NiMn alloy electrodes. The activated electrode delivered an ultrahigh specific-capacitance of 2700 F/cm3 at 0.5 A/cm3. The symmetric device showcased an excellent energy density of 96.94 Wh/L and a remarkable cycle life of 95% retention after 10,000 cycles. Transmission electron microscopy and atom probe tomography studies revealed the evolution of a unique hierarchical microstructure comprising fine Ni/NiMnO3 nanoligaments within MnO2-rich nanoflakes. Theoretical analysis using density functional theory showed semimetallic nature of the nanoscaled oxygen-vacancy-rich NiMnO3 structure, highlighting enhanced carrier concentration and electronic conductivity of the active region. Furthermore, the geometrical model of NiMnO3 crystals revealed relatively large voids, likely providing channels for the ion intercalation/de-intercalation. The current processing approach is highly adaptable and can be applied to a wide range of material systems for designing highly efficient electrodes for energy-storage devices.

3.
Nano Lett ; 15(6): 3697-702, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25927160

RESUMO

Using first-principles calculations, we establish the existence of highly stable polymorphs of hcp metals (Ti, Mg, Be, La and Y) with nanoscale structural periodicity. They arise from heterogeneous deformation of the hcp structure occurring in response to large shear stresses localized at the basal planes separated by a few nanometers. Through Landau theoretical analysis, we show that their stability derives from nonlinear coupling between strains at different length scales. Such multiscale hyperelasticity and long-period structures constitute a new mechanism of size-dependent plasticity and its enhancement in nanoscale hcp metals.

4.
J Am Chem Soc ; 137(8): 3024-30, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25671293

RESUMO

Face-centered cubic (fcc) lattice is the only known crystal structure of bulk gold. In the present work, we report the presence of body-centered tetragonal (bct) and body-centered orthorhombic (bco) phases in bipyramidal Au microcrystals with penta-twinned tips. These microcrystals have been obtained by thermolysis of (AuCl4)(-) stabilized with tetraoctylammonium bromide (ToABr) in air at about 220 °C for 30 min. Using a laboratory monochromatic X-ray source, the non-fcc phases could be readily detected. The remarkable occurrence of non-fcc phases of Au grown in the temperature window of 200-250 °C results from the geometrically induced strains in the bipyramids. Having derived first-principles theoretical support for the temperature-dependent stability of non-fcc Au structures under stress, we identify its origin in soft modes. Annealing at high temperatures relieves the stress, thus destabilizing the non-fcc phases.

5.
J Phys Condens Matter ; 26(38): 385402, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25185834

RESUMO

We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along [1 1̄ 0] and [1 2̄ 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF[1 2̄ 1]) in Cu reveals structural instabilities, indicating that the energy barrier (γusf) along the (1 1 1)[1 2̄ 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA