Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Parasitol ; 329: 110214, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823187

RESUMO

Babesia caballi is an intra-erythrocytic parasite causing equine piroplasmosis. Three B. caballi genotypes (A, B, and C) have been identified based on the 18 S rRNA and rhoptry-associated protein (rap-1) gene sequences. These variant parasite genotypes compromise the diagnostic utility of the WOAH-recommended serological assays in declaring horses free of equine piroplasmosis. Although a gene encoding a spherical body protein 4 (sbp4) has recently been identified as a potential antigen for the serological detection of B. caballi, the ability of this antigen to detect the different geographical strains has not been determined. The molecular distinction between variant B. caballi genotypes is limited and therefore we developed molecular typing assays for the rapid detection and quantification of distinct parasite genotypes. Field samples were screened for the presence of B. caballi using an established multiplex equine piroplasmosis qPCR assay. In this study, B. caballi genotype A was not detected in any field samples screened. However, phylogenetic analysis of the amplified sbp4 and 18 S rRNA genes confirmed the phylogenetic groupings of the South African isolates into either B. caballi genotypes B or C. A multiple sequence alignment of the sbp4 gene sequences obtained in this study together with the published sbp4 sequences representing B. caballi genotype A, were used to identify conserved regions within the gene to design three primer pairs and three genotype-specific TaqMan minor-groove binder (MGB™) probes. The qPCR assays were shown to be specific and efficient in the detection and differentiation between B. caballi genotypes A, B, and C and could be used as a diagnostic assay to prevent the unintentional spread of variant B. caballi genotypes globally.

2.
Microorganisms ; 11(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985288

RESUMO

In Africa, ticks continue to be a major hindrance to the improvement of the livestock industry due to tick-borne pathogens that include Anaplasma, Ehrlichia, Rickettsia and Coxiella species. A systemic review and meta-analysis were conducted here and highlighted the distribution and prevalence of these tick-borne pathogens in African ticks. Relevant publications were searched in five electronic databases and selected using inclusion/exclusion criteria, resulting in 138 and 78 papers included in the qualitative and quantitative analysis, respectively. Most of the studies focused on Rickettsia africae (38 studies), followed by Ehrlichia ruminantium (27 studies), Coxiella burnetii (20 studies) and Anaplasma marginale (17 studies). A meta-analysis of proportions was performed using the random-effects model. The highest prevalence was obtained for Rickettsia spp. (18.39%; 95% CI: 14.23-22.85%), R. africae (13.47%; 95% CI: 2.76-28.69%), R. conorii (11.28%; 95% CI: 1.77-25.89%), A. marginale (12.75%; 95% CI: 4.06-24.35%), E. ruminantium (6.37%; 95% CI: 3.97-9.16%) and E. canis (4.3%; 95% CI: 0.04-12.66%). The prevalence of C. burnetii was low (0%; 95% CI: 0-0.25%), with higher prevalence for Coxiella spp. (27.02%; 95% CI: 10.83-46.03%) and Coxiella-like endosymbionts (70.47%; 95% CI: 27-99.82%). The effect of the tick genera, tick species, country and other variables were identified and highlighted the epidemiology of Rhipicephalus ticks in the heartwater; affinity of each Rickettsia species for different tick genera; dominant distribution of A. marginale, R. africae and Coxiella-like endosymbionts in ticks and a low distribution of C. burnetii in African hard ticks.

3.
Pathogens ; 11(2)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35215080

RESUMO

African animal trypanosomosis (AAT), is an infectious parasitic disease of wildlife and livestock caused by multiple species and strains of Trypanosoma. In South Africa, it is restricted to northern KwaZulu-Natal (NKZN) and caused by Trypanosoma congolense and Trypanosoma vivax. A cross-sectional study was done to determine AAT prevalence in 384 goat samples and identify trypanosome species circulating in 60 cattle at dip tanks that are on the interface with the Hluhluwe-uMfolozi game reserve in NKZN. Both cattle and goat samples were analyzed using the buffy coat technique (BCT) and a polymerase chain reaction (PCR) assay targeting the internal transcribed spacer 1 (ITS) region. Cattle samples were further analyzed using an ITS quantitative real-time PCR (qPCR) assays designed for the detection of T. congolense, T. vivax, and T. brucei. None of the goat samples tested positive for Trypanosoma infections. The ITS qPCR assay detected Trypanosoma DNA in 30% of the cattle samples, while only 8.3% were positive with the ITS PCR and 11.7% were positive using BCT. Quantitative real-time PCR assays were designed to amplify a 98 bp, 137 bp, and 116 bp fragment of the cathepsin L-like (CATL) gene from T. brucei, T. theileri, and T. congolense, respectively. Each assay was shown to be efficient (>94%) and specific (109 to 102/101 copies/reaction) in the detection of Trypanosoma species. The CATL qPCR assays detected T. congolense and T. theileri infections in 33.3% of the cattle samples. The CATL qPCR assays also detected T. congolense infections in goats (23.1%) that were neither detected by BCT nor the ITS PCR. The CATL qPCR assays provide an additional, sensitive, and specific tool for Trypanosoma diagnostics. The presence of trypanosomes in goats suggests they might be potential reservoirs of infections to other livestock.

4.
Int J Parasitol Parasites Wildl ; 14: 260-266, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33898226

RESUMO

Despite being a parasitic disease known since ancient times, some epidemiological aspects of cystic echinococcosis (CE) remain unclear. Many studies describe its prevalence and genotyping in populations of domestic animals and livestock, but data regarding wildlife are often scarce and incomplete. The available literature suggests that CE has never been reported in African rhinos. Considering the fragile conservation status of these species due to continued poaching, this study tries to clarify some neglected epidemiological aspects. In February 2020, an adult female of the Southern white rhinoceros, Ceratotherium simum simum (Burchell, 1817), was killed by poachers. The subsequent necropsy performed by the state veterinary team revealed the presence of seven cysts within the pulmonary tissue (four cysts in the right medio-caudal lobe and three cysts in the left medio-caudal lobe) with a diameter of between 1.5 and 2.3 cm. Given the state of decomposition of the carcass, only two of these were suitable for microscopic examination. Specimens were examined under 10x and 40x microscopic magnification for the confirmation of fertility of the cysts, based on the presence of numerous protoscoleces in different stages of maturation. A histopathological examination was also performed to describe the relationship between parasite and host tissue reaction. Cyst samples were subjected to PCR. The primers successfully amplified the expected fragments of the cox-1 and the nad-1 gene from the isolated genomic DNA, revealing high sequence identity with published sequences of Echinococcus equinus Williams & Sweatman, 1963 isolate G4 and E. equinus isolate SLG5-G4.

5.
Ticks Tick Borne Dis ; 11(2): 101358, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31870636

RESUMO

Recently reported substantial genetic diversity within Theileria equi 18S rRNA gene sequences has led to the identification of five genotypes A, B, C, D, and E, complicating molecular and serological diagnosis. In addition, T. haneyi has lately been reported as a species closely related to the T. equi 18S rRNA genotype C (Knowles et al., 2018). Theileria spp. of this group have a monophyletic origin and are therefore referred to as Equus group to distinguish them from the remaining Theileria lineages (Jalovecka et al., 2019). In this study, we report on the development of genotype-specific quantitative real-time PCR assays capable of detecting and distinguishing between each parasite genotype. Alignment of complete 18S rRNA sequences available on GenBank allowed for the design of a single primer pair and five TaqMan minor groove binder (MGB™) probes specific for each genotype (A-E). The assays, evaluated as qPCR simplex and two qPCR multiplex formats (Multiplex EP-ABC and Multiplex EP-DE), were shown to be both efficient and specific in the detection of T. equi genotypes. The developed qPCR assays were used to study (i) the intra-specific diversity of parasite genotypes within horse and zebra, (ii) the inter-specific differences in parasite genotype diversity in horses as compared to zebra, and (iii) the geographic distribution of T. equi 18S rRNA genotypes in South Africa. In addition, (iv) the presence of T. haneyi in South Africa was evaluated. An assessment of 342 equine field samples comprising 149 field horses, 55 racehorses, and 138 wild zebra confirmed the previously reported presence of T. equi 18S rRNA genotypes A, B, C, and D, and absence of genotype E in South African equids. Theileria equi genotypes A, B, C, and D, were detected in zebra, whereas only genotypes A, C and D, could be identified in field horses, and only genotypes A and C in racehorses. Genotypes B and D were the dominant genotypes identified in zebra in South Africa, while horses were predominantly infected with T. equi genotypes A and C. The greater diversity of T. equi genotypes in zebra suggests that it is an ancestral host for this piroplasmid lineage. Importantly, evidence is presented that each identified T. equi genotype segregates independently in each of the three studied equid populations reinforcing the notion that they represent individual separate entities corresponding to species. Preliminary investigations of the relationship between T. equi genotype C infections and Theileria haneyi, suggest that in addition to the five currently known T. equi genotypes, South African equids are also infected with T. haneyi.


Assuntos
Equidae , Doenças dos Cavalos/epidemiologia , Theileria/genética , Theileriose/epidemiologia , Animais , Sequência de Bases , Genótipo , Doenças dos Cavalos/parasitologia , Cavalos , RNA de Protozoário/análise , RNA Ribossômico 18S/análise , Alinhamento de Sequência/veterinária , África do Sul/epidemiologia , Theileriose/parasitologia
6.
Int J Parasitol Parasites Wildl ; 9: 130-133, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31080728

RESUMO

Translocation of animals in fragmented habitats is an important means of dispersal and gene flow, however, the movement of animals has led to the spread of various diseases globally and wildlife are often the reservoirs of these diseases. Currently, Cape mountain zebra are translocated within South Africa as a management method for augmentation of isolated and fragmented populations. The movement of pathogens due to translocations in local regions have gone largely unchecked, particularly where there may still be isolated regions that can be negatively affected. Equine piroplasmosis is a tick-borne disease caused by Theilaria equi and/or Babesia caballi reported to occur in equids (Bhoora et al., 2010; Zweygarth et al., 2002). Here, the presence of T. equi and B. caballi was detected in 137 clinically healthy Cape mountain zebra from three South African reserves, Mountain Zebra National Park (MZNP), De Hoop Nature Reserve (DHNR) and Karoo National Park (KNP) using the multiplex EP real-time PCR (qPCR) assay. We observed 100% prevalence for T. equi and identified only one animal from MZNP with B. caballi. These results affirm that precautions should be taken prior to founding new populations of Cape mountain zebra and that potential farms and properties adjacent to prospective reserves should be screened for the presence of the organisms in order to mitigate risks of infection to domestic animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...