Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(18): 9982-9989, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32363365

RESUMO

Despite the impacts - both positive and negative - of atmospheric ozone for life on Earth, there remain significant gaps in our knowledge of the products, mechanisms and rates of some of its most fundamental gas phase reactions. This incomplete understanding is largely due to the experimental challenges involved in the study of gas-phase reactions of ozone and, in particular, the identification of short-lived reaction intermediates. Here we report direct observation of the stepwise reaction of the halide anions iodide (I-) and bromide (Br-) with ozone to produce XO3- (where X = I and Br, respectively). These results substantially revise the rate constant for the I- + O3 reaction to 1.1 (± 0.5) × 10-12 cm3 molecule-1 s-1 (0.13% efficiency) and the Br- + O3 reaction to 6.2 (± 0.4) × 10-15 cm3 molecule-1 s-1 (0.001% efficiency). Exploiting five-orders of temporal dynamic range on a linear ion trap mass spectrometer enabled explicit measurement of the rate constants for the highly efficient intermediate, XO- + O3 and XO2- + O3, reactions thus confirming a stepwise addition of three oxygen atoms (i.e., X- + 3O3 → XO3- + 3O2) with the first addition representing the rate determining step. Evidence is also presented for (i) slow reverse reactions of XO- and XO2-, but not XO3-, with molecular oxygen and (ii) the photodissociation of IO-, IO2- and IO3- to release I-. Collectively, these results suggest relatively short lifetimes for Br- and I- in the tropospere with direct gas-phase oxidation by ozone playing a role in both the formation of atmospheric halogen oxides and, conversely, in the ozone depletion associated with springtime polar bromine explosion events.

2.
Anal Chem ; 88(5): 2685-92, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26799085

RESUMO

Unambiguous identification of isomeric lipids by mass spectrometry represents a significant analytical challenge in contemporary lipidomics. Herein, the combination of collision-induced dissociation (CID) with ozone-induced dissociation (OzID) on an ion-trap mass spectrometer is applied to the identification of triacylglycerol (TG) isomers that vary only by the substitution pattern of fatty acyl (FA) chains esterified to the glycerol backbone. Isolated product ions attributed to loss of a single FA arising from CID of [TG + Na](+) ions react rapidly with ozone within the ion trap. The resulting CID/OzID spectra exhibit abundant ions that unequivocally reveal the relative position of FAs along the backbone. Isomeric TGs containing two or three different FA substituents are readily differentiated by diagnostic ions present in their CID/OzID spectra. Compatibility of this method with chromatographic separations enables the characterization of unusual TGs containing multiple short-chain FAs present in Drosophila.


Assuntos
Ácidos Graxos/química , Ozônio/química , Triglicerídeos/química , Animais , Drosophila/química , Isomerismo , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA