Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sci Rep ; 14(1): 10852, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741006

RESUMO

Hematopoietic stem-cell (HSC) transplantation using a donor with a homozygous mutation in the HIV co-receptor CCR5 (CCR5Δ32/Δ32) holds great promise as a cure for HIV-1. Previously, there were three patients that had been reported to be completely cured from HIV infection by this approach. However, finding a naturally suitable Human Leukocyte Antigen (HLA)-matched homozygous CCR5Δ32 donor is very difficult. The prevalence of this allele is only 1% in the Caucasian population. Therefore, additional sources of CCR5Δ32/Δ32 HSCs are required. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated (Cas) system is one method to mediate CCR5 knockout in HSCs that has been successfully employed as a gene editing tool in clinical trials. Additional anti-HIV-1 strategies are still required for broad-spectrum inhibition of HIV-1 replication. Here in this study, we combined an additional anti-HIV-1 therapy, which is C46, a cell membrane-anchored HIV-1 fusion inhibitor with the CRISPR/Cas9 mediated knockout CCR5. The combined HIV-1 therapeutic genes were investigated for the potential prevention of both CCR5 (R5)- and CXCR4 (X4)-tropic HIV-1 infections in the MT4CCR5 cell line. The combinatorial CRISPR/Cas9 therapies were superior compared to single method therapy for achieving the HIV-1 cure strategy and shows potential for future applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Inibidores da Fusão de HIV , Infecções por HIV , HIV-1 , Receptores CCR5 , Receptores CCR5/genética , Receptores CCR5/metabolismo , Edição de Genes/métodos , Humanos , HIV-1/genética , HIV-1/efeitos dos fármacos , Infecções por HIV/genética , Infecções por HIV/virologia , Infecções por HIV/terapia , Inibidores da Fusão de HIV/farmacologia , Linhagem Celular , Replicação Viral/efeitos dos fármacos , Proteínas Recombinantes de Fusão
2.
Sci Rep ; 14(1): 9177, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649404

RESUMO

Gaucher disease (GD) is a lysosomal storage disorder caused by a mutation in the GBA1 gene, responsible for encoding the enzyme Glucocerebrosidase (GCase). Although neuronal death and neuroinflammation have been observed in the brains of individuals with neuronopathic Gaucher disease (nGD), the exact mechanism underlying neurodegeneration in nGD remains unclear. In this study, we used two induced pluripotent stem cells (iPSCs)-derived neuronal cell lines acquired from two type-3 GD patients (GD3-1 and GD3-2) to investigate the mechanisms underlying nGD by biochemical analyses. These iPSCs-derived neuronal cells from GD3-1 and GD3-2 exhibit an impairment in endoplasmic reticulum (ER) calcium homeostasis and an increase in unfolded protein response markers (BiP and CHOP), indicating the presence of ER stress in nGD. A significant increase in the BAX/BCL-2 ratio and an increase in Annexin V-positive cells demonstrate a notable increase in apoptotic cell death in GD iPSCs-derived neurons, suggesting downstream signaling after an increase in the unfolded protein response. Our study involves the establishment of iPSCs-derived neuronal models for GD and proposes a possible mechanism underlying nGD. This mechanism involves the activation of ER stress and the unfolded protein response, ultimately leading to apoptotic cell death in neurons.


Assuntos
Estresse do Retículo Endoplasmático , Doença de Gaucher , Células-Tronco Pluripotentes Induzidas , Neurônios , Resposta a Proteínas não Dobradas , Doença de Gaucher/metabolismo , Doença de Gaucher/patologia , Doença de Gaucher/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , Apoptose , Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular
3.
Heliyon ; 10(4): e26613, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38434025

RESUMO

Human immunodeficiency virus (HIV)-1 infection is an important public health problem worldwide. After primary HIV-1 infection, transcribed HIV-1 DNA is integrated into the host genome, serving as a reservoir of the virus and hindering a definite cure. Although highly active antiretroviral therapy suppresses active viral replication, resulting in undetectable levels of HIV RNA in the blood, a viral rebound can be detected after a few weeks of treatment interruption. This supports the concept that there is a stable HIV-1 reservoir in people living with HIV-1. Recently, a few individuals with HIV infection were reported to be probably cured by hematopoietic stem transplantation (HSCT). The underlying mechanism for this success involved transfusion of uninfected hematopoietic stem and progenitor cells (HSPCs) from CCR5-mutated donors who were naturally resistant to HIV infection. Thus, gene editing technology to provide HIV-resistant HSPC has promise in the treatment of HIV infections by HSCT. In this study, we aimed to find HIV-infected individuals likely to achieve a definite cure via gene editing HSCT. We screened for total HIV proviral DNA by Alu PCR in peripheral blood mononuclear cells (PBMCs) of 20 HIV-infected individuals with prolonged viral suppression. We assessed the amount of intact proviral DNA via a modified intact proviral DNA assay (IPDA) in purified peripheral CD34+ HSPCs. PBMCs from all 20 individuals were positive for the gag gene in Alu PCR, and peripheral CD34+ HSPCs were IPDA-negative for six individuals. Our results suggested that these six HIV-infected individuals could be candidates for further studies into the ability of gene editing HSCT to lead to a definite HIV cure.

4.
Stem Cell Res Ther ; 15(1): 60, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433217

RESUMO

BACKGROUND: The diarylheptanoid ASPP 049 has improved the quality of adult hematopoietic stem cell (HSC) expansion ex vivo through long-term reconstitution in animal models. However, its effect on hematopoietic regeneration from human induced pluripotent stem cells (hiPSCs) is unknown. METHOD: We utilized a defined cocktail of cytokines without serum or feeder followed by the supplementation of ASPP 049 to produce hematopoietic stem/progenitor cells (HSPCs). Flow cytometry and trypan blue exclusion analysis were used to identify nonadherent and adherent cells. Nonadherent cells were harvested to investigate the effect of ASPP 049 on multipotency using LTC-IC and CFU assays. Subsequently, the mechanism of action was explored through transcriptomic profiles, which were validated by qRT-PCR, immunoblotting, and immunofluorescence analysis. RESULT: The supplementation of ASPP 049 increased the number of phenotypically defined primitive HSPCs (CD34+CD45+CD90+) two-fold relative to seeded hiPSC colonies, indicating enhanced HSC derivation from hiPSCs. Under ASPP 049-supplemented conditions, we observed elevated HSPC niches, including CD144+CD73- hemogenic- and CD144+CD73+ vascular-endothelial progenitors, during HSC differentiation. Moreover, harvested ASPP 049-treated cells exhibited improved self-renewal and a significantly larger proportion of different blood cell colonies with unbiased lineages, indicating enhanced HSC stemness properties. Transcriptomics and KEGG analysis of sorted CD34+CD45+ cells-related mRNA profiles revealed that the Hippo signaling pathway is the most significant in responding to WWTR1/TAZ, which correlates with the validation of the protein expression. Interestingly, ASPP 049-supplemented HSPCs upregulated 11 genes similarly to umbilical cord blood-derived HSPCs. CONCLUSION: These findings suggest that ASPP 049 can improve HSC-generating protocols with proliferative potentials, self-renewal ability, unbiased differentiation, and a definable mechanism of action for the clinical perspective of hematopoietic regenerative medicine.


Assuntos
Via de Sinalização Hippo , Células-Tronco Pluripotentes Induzidas , Adulto , Animais , Humanos , Diferenciação Celular , Diarileptanoides/farmacologia , Antígenos CD34
5.
Cytotherapy ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38551525

RESUMO

BACKGROUND AIMS: Gene therapy using lentiviral vectors (LVs) that harbor a functional ß-globin gene provides a curative treatment for hemoglobinopathies including beta-thalassemia and sickle cell disease. Accurate quantification of the vector copy number (VCN) and/or the proportion of transduced cells is critical to evaluate the efficacy of transduction and stability of the transgene during treatment. Moreover, commonly used techniques for LV quantification, including real-time quantitative polymerase chain reaction (PCR) or fluorescence-activated cell sorting, require either a standard curve or expression of a reporter protein for the detection of transduced cells. In the present study, we describe a digital droplet PCR (ddPCR) technique to measure the lentiviral VCN in transduced hematopoietic stem and progenitor cells (HSPCs). METHODS: After HSPCs were transduced with an LV encoding the therapeutic ß-globin (ßA-T87Q) gene, the integrated lentiviral sequence in the host genome was amplified with primers that targeted a sequence within the vector and the human RPP30 gene. The dynamic range of ddPCR was between 5 × 10-3 ng and 5 × 10-6 ng of target copy per reaction. RESULTS: We found that the ddPCR-based approach was able to estimate VCN with high sensitivity and a low standard deviation. Furthermore, ddPCR-mediated quantitation of lentiviral copy numbers in differentiated erythroblasts correlated with the level of ßA-T87Q protein detected by reverse-phase high-performance liquid chromatography. CONCLUSIONS: Taken together, the ddPCR technique has the potential to precisely detect LV copy numbers in the host genome, which can be used for VCN estimation, calculation of infectious titer and multiplicity of infection for HSPC transduction in a clinical setting.

6.
Stem Cell Res ; 73: 103229, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37890332

RESUMO

Gaucher disease (GD) is a common lysosomal storage disease resulting from mutations in the glucocerebrosidase (GBA1) gene. This genetic disorder manifests with symptoms affecting multiple organs, yet the underlying mechanisms leading to pathology remain elusive. In this study, we successfully generated the MUi030-A human induced pluripotent stem cell (hiPSC) line using a non-integration method from a male type-3 GD patient with a homozygous c.1448T>C (L444P) mutation. These hiPSCs displayed a normal karyotype and pluripotency markers and the remarkable ability to differentiate into cells representing all three germ layers. This resourceful model holds significant promise for illuminating GD's underlying pathogenesis.


Assuntos
Doença de Gaucher , Células-Tronco Pluripotentes Induzidas , Humanos , Masculino , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Doença de Gaucher/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Células Cultivadas
7.
Protein Expr Purif ; 210: 106313, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37276914

RESUMO

Many therapeutic proteins are expressed in Escherichia coli bacteria for the low cost and high yield obtained. However, these gram-negative bacteria also generate undesirable endotoxin byproducts such as lipopolysaccharides (LPS). These endotoxins can induce a human immune response and cause severe inflammation. To mitigate this problem, we have employed the ClearColi BL21 (DE3) endotoxin-free cells as an expression host for Cas9 protein production. Cas9 is an endonuclease enzyme that plays a key role in the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated protein 9 (CRISPR/Cas9) genome editing technique. This technology is very promising for use in diagnostics as well as treatment of diseases, especially for genetic diseases such as thalassemia. The potential uses for this technology thus generate a considerable interest for Cas9 utilization as a therapeutic protein in clinical treatment. Therefore, special care in protein production should be a major concern. Accordingly, we expressed the Cas9 protein in endotoxin-free bacterial cells achieving 99% purity with activity comparable to commercially available Cas9. Our protocol therefore yields a cost-effective product suitable for invitro experiments with stem cells.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Humanos , Endotoxinas/genética , Edição de Genes/métodos , Proteínas Repressoras
8.
iScience ; 25(6): 104353, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35874918

RESUMO

Targeting immune checkpoints, such as Programmed cell Death 1 (PD1), has improved survival in cancer patients by restoring antitumor immune responses. Most patients, however, relapse or are refractory to immune checkpoint blocking therapies. Neuropilin-1 (NRP1) is a transmembrane glycoprotein required for nervous system and angiogenesis embryonic development, also expressed in immune cells. We hypothesized that NRP1 could be an immune checkpoint co-receptor modulating CD8+ T cells activity in the context of the antitumor immune response. Here, we show that NRP1 is recruited in the cytolytic synapse of PD1+CD8+ T cells, cooperates and enhances PD-1 activity. In mice, CD8+ T cells specific deletion of Nrp1 improves anti-PD1 antibody antitumor immune responses. Likewise, in human metastatic melanoma, the expression of NRP1 in tumor infiltrating CD8+ T cells predicts poor outcome of patients treated with anti-PD1. NRP1 is a promising target to overcome resistance to anti-PD1 therapies.

9.
Molecules ; 27(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744960

RESUMO

Abnormal cell proliferation and accumulation of fluid-filled cysts along the nephrons in polycystic kidney disease (PKD) could lead to a decline in renal function and eventual end-stage renal disease (ESRD). Gambogic acid (GA), a xanthone compound extracted from the brownish resin of the Garcinia hanburyi tree, exhibits various pharmacological properties, including anti-inflammation, antioxidant, anti-proliferation, and anti-cancer activity. However, its effect on inhibiting cell proliferation in PKD is still unknown. This study aimed to determine the pharmacological effects and detailed mechanisms of GA in slowing an in vitro cyst growth model of PKD. The results showed that GA (0.25-2.5 µM) significantly retarded MDCK cyst growth and cyst formation in a dose-dependent manner, without cytotoxicity. Using the BrdU cell proliferation assay, it was found that GA (0.5-2.5 µM) suppressed MDCK and Pkd1 mutant cell proliferation. In addition, GA (0.5-2.5 µM) strongly inhibited phosphorylation of ERK1/2 and S6K expression and upregulated the activation of phosphorylation of AMPK, both in MDCK cells and Pkd1 mutant cells. Taken together, these findings suggested that GA could retard MDCK cyst enlargement, at least in part by inhibiting the cell proliferation pathway. GA could be a natural plant-based drug candidate for ADPKD intervention.


Assuntos
Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Xantonas , Proliferação de Células , Humanos , Rim , Doenças Renais Policísticas/tratamento farmacológico , Rim Policístico Autossômico Dominante/tratamento farmacológico , Xantonas/farmacologia , Xantonas/uso terapêutico
10.
Biomedicines ; 10(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35740448

RESUMO

Erythropoietin (Epo) is widely used for the treatment of anemia; however, non-hematopoietic effects and cancer risk limit its clinical applications. Therefore, alternative molecules to improve erythropoiesis in anemia patients are urgently needed. Here, we investigated the potential effects of a phytoestrogen diarylheptanoid (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol, (ASPP 049) isolated from Curcuma comosa on promoting erythropoiesis. Treatment with C. comosa extract improved anemia symptoms demonstrated by increasing red blood cell numbers, hematocrit, and hemoglobin content in anemic mice. In addition, ASPP 049, the major compound isolated from C. comosa, enhanced the suboptimal Epo dosages to improve erythroid cell differentiation from hematopoietic stem cells, which was inhibited by the estrogen receptor (ER) antagonist, ICI 182,780. Moreover, the ASPP 049-activated Epo-Epo receptor (EpoR) complex subsequently induced phosphorylation of EpoR-mediated erythropoiesis pathways: STAT5, MAPK/ERK, and PI3K/AKT in Epo-sensitive UT-7 cells. Taken together, these results suggest that C. comosa extract and ASPP 049 increased erythropoiesis through ER- and EpoR-mediated signaling cascades. Our findings provide insight into the specific interaction between a phytoestrogen diarylheptanoid and Epo-EpoR in a hematopoietic system for the potential treatment of anemia.

11.
Antiviral Res ; 204: 105370, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35772601

RESUMO

Next-generation COVID-19 vaccines are critical due to the ongoing evolution of SARS-CoV-2 virus and rapid waning duration of the neutralizing antibody response against current vaccines. The mRNA vaccines mRNA-1273 and BNT162b2 were developed using linear transcripts encoding the prefusion-stabilized trimers (S-2P) of the wildtype spike, which have shown a reduced neutralizing activity against the variants of concern B.1.617.2 and B.1.1.529. Recently, a new version of spike trimer, termed VFLIP (five (V) prolines, Flexibly-Linked, Inter-Protomer disulfide) was developed. Based on the original amino acid sequence of the wildtype spike, VFLIP was genetically engineered by using five proline substitutions, a flexible cleavage site amino acid linker, and an inter-protomer disulfide bond. It has been suggested to possess native-like glycosylation, and greater pre-fusion trimeric stability as opposed to S-2P. Here, we report that the spike protein VFLIP-X, containing six rationally substituted amino acids to reflect emerging variants (K417N, L452R, T478K, E484K, N501Y and D614G), offers a promising candidate for a next-generation SARS-CoV-2 vaccine. Mice immunized by a circular mRNA (circRNA) vaccine prototype producing VFLIP-X had detectable neutralizing antibody titers for up to 7 weeks post-boost against SARS-CoV-2 variants of concern (VOCs) and variants of interest (VOIs). In addition, a balance in TH1 and TH2 responses was achieved by immunization with VFLIP-X. Our results indicate that the VFLIP-X delivered by circRNA induces humoral and cellular immune responses, as well as broad neutralizing activity against SARS-CoV-2 variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , RNA Circular , SARS-CoV-2 , Vacinas de mRNA , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Dissulfetos , Camundongos , Prolina , Subunidades Proteicas , RNA Circular/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Vacinas de mRNA/genética
12.
Stem Cell Res ; 60: 102698, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35151019

RESUMO

Gaucher disease (GD) is one of the most prevalent lysosomal storage diseases caused by mutation of glucocerebrosidase (GBA1) gene. GD patients develop symptoms in various organs of the body; however, the underlying mechanisms causing pathology are still elusive. Thus, a suitable disease model is important in order to facilitate subsequent investigations. Here, we established MUi031-A human induced pluripotent stem cell (hiPSC) line from CD34+ hematopoietic stem cells of a female type-3 GD patient with homozygous c.1448 T > C (L444P) mutation. The cells exhibited embryonic stem cell-like characteristics and expressed pluripotency markers with capability to differentiate into three germ layers.


Assuntos
Doença de Gaucher , Células-Tronco Pluripotentes Induzidas , Feminino , Doença de Gaucher/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Homozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética
14.
Cell Mol Neurobiol ; 42(7): 2337-2353, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34059943

RESUMO

The Cath.a-differentiated (CAD) cell line is a central nervous system-derived catecholaminergic cell line originating from tyrosine hydroxylase (TH)-producing neurons located around the locus coeruleus area of the mouse brain. CAD cells have been used as an in vitro model for cellular and molecular studies due to their ability to differentiate under serum-free media conditions. However, the lack of serum-derived survival factors, limits the longevity for differentiated CAD cells to be maintained in healthy conditions; thereby, limiting their use in long-term culture studies. Here, we present a novel differentiation method that utilizes dexamethasone (Dex), a synthetic glucocorticoid receptor agonist. Specifically, we discovered that the addition of 100 µM of Dex into the 1% fetal bovine serum (FBS)-supplemented media effectively induced neuronal differentiation of CAD cells, as characterized by neurite formation and elongation. Dex-differentiated CAD cells exited the cell cycle, stopped proliferating, extended the neurites, and expressed neuronal markers. These effects were dependent on the glucocorticoid receptors (GR) as they were abolished by GR knockdown. Importantly, Dex-differentiated CAD cells showed longer survival duration than serum-free differentiated CAD cells. In addition, RNA-sequencing and qPCR data demonstrate that several genes involved in proliferation, neuronal differentiation, and survival pathways were differentially expressed in the Dex-differentiated cells. This is the first study to reveal Dex as a novel differentiation methodology used to generate postmitotic neuronal CAD cells, which may be utilized as an in vitro neuronal model for cellular and molecular neurobiology research.


Assuntos
Sistema Nervoso Central , Neuritos , Animais , Diferenciação Celular , Dexametasona , Camundongos , Neurônios , Receptores de Glucocorticoides
15.
EBioMedicine ; 75: 103785, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34959131

RESUMO

BACKGROUND: Erythrocytosis is a hematological disorder usually related to hematopoietic stem cell somatic mutations. However, unexplained erythrocytosis remains frequent. In this study, we evaluated the involvement of IgA1, a regulator of erythropoiesis also implicated in IgA nephropathy (IgAN) pathophysiology, in unexplained polycythemia/erythrocytosis (PE) of IgAN patients. METHODS: IgAN-PE patients' serum was collected, analyzed and used to study IgA1 effect on proliferation and differentiation of erythroid progenitors. Hematological parameters of transgenic mice for human alpha1 heavy chain were studied. Multicentric observational cohorts of chronic kidney disease (CKD) patients, including both native kidney diseases and renal transplants, were studied to analyze patient hemoglobin levels. FINDINGS: We retrospectively identified 6 patients with IgAN and unexplained PE. In large CKD cohorts, IgAN was associated with PE in 3.5% of patients (p<0.001 compared to other nephropathies). IgAN was an independent factor associated with higher hemoglobin levels (13.1g/dL vs 12.2 g/dL, p=0.01). During post-transplant anemia, anemia recovery was faster in IgAN patients. Elevated polymeric/monomeric IgA1 ratio as well as high Gd-IgA1 rate were observed in circulating IgA1 of the 6 IgAN-PE patients as compared with control or IgAN patients without PE. IgA1 from these patients increased the sensitivity of erythroid progenitors to Epo. In mice, we also observed an elevation of hematocrit in alpha1 knock-in mice compared to wild type controls. INTERPRETATION: These data identify a new etiology of erythrocytosis and demonstrate the role of pIgA1 in human erythropoiesis. This syndrome of IgA-related erythrocytosis should be investigated in case of unexplained erythrocytosis and renal disease. FUNDING: This work was supported by INSERM (French national institute for health and medical research), Labex GRex and Imagine Institute (Paris, France).


Assuntos
Glomerulonefrite por IGA , Policitemia , Animais , Biomarcadores , Galactose , Glomerulonefrite por IGA/complicações , Glomerulonefrite por IGA/genética , Humanos , Imunoglobulina A , Camundongos , Policitemia/complicações , Policitemia/genética , Estudos Retrospectivos
16.
Front Pharmacol ; 12: 730873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658870

RESUMO

ß-thalassemia, a disease that results from defects in ß-globin synthesis, leads to an imbalance of ß- and α-globin chains and an excess of α chains. Defective erythroid maturation, ineffective erythropoiesis, and shortened red blood cell survival are commonly observed in most ß-thalassemia patients. In severe cases, blood transfusion is considered as a mainstay therapy; however, regular blood transfusions result in chronic iron overload with life-threatening complications, e.g., endocrine dysfunction, cardiomyopathy, liver disease, and ultimately premature death. Therefore, transplantation of healthy hematopoietic stem cells (HSCs) is considered an alternative treatment. Patients with a compatible human leukocyte antigen (HLA) matched donor can be cured by allogeneic HSC transplantation. However, some recipients faced a high risk of morbidity/mortality due to graft versus host disease or graft failure, while a majority of patients do not have such HLA match-related donors. Currently, the infusion of autologous HSCs modified with a lentiviral vector expressing the ß-globin gene into the erythroid progenitors of the patient is a promising approach to completely cure ß-thalassemia. Here, we discuss a history of ß-thalassemia treatments and limitations, in particular the development of ß-globin lentiviral vectors, with emphasis on clinical applications and future perspectives in a new era of medicine.

17.
Biomed Pharmacother ; 143: 112102, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34474347

RESUMO

Hematopoietic stem cells (HSCs, CD34+ cells) have shown therapeutic efficacy for transplantation in various hematological disorders. However, a large quantity of HSCs is required for transplantation. Therefore, strategies to increase HSC numbers and preserve HSC functions through ex vivo culture are critically required. Here, we report that expansion medium supplemented with ASPP 049, a diarylheptanoid isolated from Curcuma comosa, and a cocktail of cytokines markedly increased numbers of adult CD34+ cells. Interestingly, phenotypically defined primitive HSCs (CD34+CD38-CD90+) were significantly increased under ASPP 049 treatment relative to control. ASPP 049 treatment also improved two functional properties of HSCs, as evidenced by an increased number of CD34+CD38- cells in secondary culture (self-renewal) and the growth of colony-forming units as assessed by colony formation assay (multilineage differentiation). Transplantation of cultured CD34+ cells into immunodeficient mice demonstrated the long-term reconstitution and differentiation ability of ASPP 049-expanded cells. RNA sequencing and KEGG analysis revealed that Hippo signaling was the most likely pathway involved in the effects of ASPP 049. These results suggest that ASPP 049 improved ex vivo expansion and functional preservation of expanded HSCs. Our findings provide a rationale for the use of ASPP 049 to grow HSCs prior to hematological disease treatment.


Assuntos
Células-Tronco Adultas/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Diarileptanoides/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Adultas/fisiologia , Células-Tronco Adultas/transplante , Animais , Antígenos CD34/metabolismo , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Curcuma/química , Diarileptanoides/isolamento & purificação , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos Nus , Fenótipo , Fatores de Tempo
18.
Vaccines (Basel) ; 9(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066016

RESUMO

Updated and revised versions of COVID-19 vaccines are vital due to genetic variations of the SARS-CoV-2 spike antigen. Furthermore, vaccines that are safe, cost-effective, and logistic-friendly are critically needed for global equity, especially for middle- to low-income countries. Recombinant protein-based subunit vaccines against SARS-CoV-2 have been reported using the receptor-binding domain (RBD) and the prefusion spike trimers (S-2P). Recently, a new version of prefusion spike trimers, named HexaPro, has been shown to possess two RBD in the "up" conformation, due to its physical property, as opposed to just one exposed RBD found in S-2P. Importantly, this HexaPro spike antigen is more stable than S-2P, raising its feasibility for global logistics and supply chain. Here, we report that the spike protein HexaPro offers a promising candidate for the SARS-CoV-2 vaccine. Mice immunized by the recombinant HexaPro adjuvanted with aluminum hydroxide using a prime-boost regimen produced high-titer neutralizing antibodies for up to 56 days after initial immunization against live SARS-CoV-2 infection. Also, the level of neutralization activity is comparable to that of convalescence sera. Our results indicate that the HexaPro subunit vaccine confers neutralization activity in sera collected from mice receiving the prime-boost regimen.

19.
Asian Pac J Cancer Prev ; 22(6): 1913-1920, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34181351

RESUMO

OBJECTIVE: Gambogic acid (GA) has been reported to induce apoptosis in cholangiocarcinoma (CCA) cell lines. However, the molecular mechanisms underlying its anti-cancer activity remain poorly understood. This study was aimed to investigate GA's effect on human CCA cell lines, KKU-M213 and HuCCA-1, and its associated mechanisms on Wnt/ß-catenin signaling pathway. METHODS: Cell viability, apoptosis, and cell cycle analysis were conducted by MTT and flow cytometry. The effect of GA mediated Wnt/ß-catenin and ER stress were determined by luciferase-reporter assay, qRT-PCR, and western blot analysis. RESULTS: GA exhibited potent cytotoxicity in CCA cells which was associated with significantly inhibited cell proliferation, promoted G1 arrest, and activated caspase 3 mediated-apoptosis. GA attenuated ß-catenin transcriptional levels, decreased ß-catenin protein, and suppressed the expression of c-Myc, a downstream target gene of Wnt/ß-catenin signaling. GA activated genes involved in ER stress mechanism in KKU-M213 and enhanced CCA's sensitivity to gemcitabine. CONCLUSION: Our findings reveal that the molecular mechanism underpinning anti-cancer effect of GA is partially mediated through the inhibition of Wnt/ß-catenin signaling pathway and induction of ER stress induced-apoptosis. GA may serve as a promising therapeutic modality for amelioration of gemcitabine-induced toxicity in CCA.


Assuntos
Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Xantonas/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos
20.
Exp Hematol ; 99: 12-20.e3, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34077792

RESUMO

Red blood cell production, or erythropoiesis, is a proliferative process that requires tight regulation. Erythropoietin (Epo) is a glycoprotein cytokine that plays a major role in erythropoiesis by triggering erythroid progenitors/precursors of varying sensitivity. The concentration of Epo in bone marrow is hypothesized to be suboptimal, and the survival of erythroid cells has been suggested to depend on Epo sensitivity. However, the key factors that control Epo sensitivity remain unknown. Two types of transferrin receptors (TfRs), TfR1 and TfR2, are known to play a role in iron uptake in erythroid cells. Here, we hypothesized that TfRs may additionally modulate Epo sensitivity during erythropoiesis by modulating Epo receptor (EpoR) signaling. Using an Epo-sensitive UT-7 (UT7/Epo) erythroid cell and human erythroid progenitor cell models, we report that iron-loaded transferrin, that is, holo-transferrin (holo-Tf), synergizes with suboptimal Epo levels to improve erythroid cell survival, proliferation, and differentiation. This is accomplished via the major signaling pathways of erythropoiesis, which include signal transducer and activator of transcription 5 (STAT5), mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK), and phosphoinositide-3-kinase (PI3K)/AKT. Furthermore, we found that this cooperation is improved by, but does not require, the internalization of TfR1. Interestingly, we observed that loss of TfR2 stabilizes EpoR levels and abolishes the beneficial effects of holo-Tf. Overall, these data reveal novel signaling properties of TfRs, which involve the regulation of erythropoiesis through EpoR signaling.


Assuntos
Antígenos CD/metabolismo , Proliferação de Células/efeitos dos fármacos , Eritroblastos/metabolismo , Eritropoetina/farmacologia , Ferro/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptores da Transferrina/metabolismo , Transferrina/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Eritropoetina/metabolismo , Humanos , Ferro/metabolismo , Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...