Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Meas ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38237198

RESUMO

Insomnia is a prevalent sleep disorder characterized by difficulties in initiating sleep or experiencing non-restorative sleep. It is a multifaceted condition that impacts both the quantity and quality of an individual's sleep. Recent advancements in machine learning (ML), and deep learning (DL) have enabled automated sleep analysis using physiological signals. This has led to the development of technologies for more accurate detection of various sleep disorders, including insomnia. This paper explores the algorithms and techniques for automatic insomnia detection. Methods: We followed the recommendations given in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) during our process of content discovery. Our review encompasses research papers published between 2015 and 2023, with a specific emphasis on automating the identification of insomnia. From a se- lection of well-regarded journals, we included more than 30 publications dedicated to insomnia detection. In our analysis, we assessed the performance of various meth- ods for detecting insomnia, considering different datasets and physiological signals. A common thread across all the papers we reviewed was the utilization of artificial intel- ligence (AI) models, trained and tested using annotated physiological signals. Upon closer examination, we identified the utilization of 15 distinct algorithms for this de- tection task. Results: Result: The major goal of this research is to conduct a thorough study to categorize, compare, and assess the key traits of automated systems for identifying insomnia. Our analysis offers complete and in-depth information. The essential com- ponents under investigation in the automated technique include the data input source, objective, machine learning (ML) and deep learning (DL) network, training framework, and references to databases. We classified pertinent research studies based on ML and DL model perspectives, considering factors like learning structure and input data types. Conclusion: Based on our review of the studies featured in this paper, we have identi- fied a notable research gap in the current methods for identifying insomnia and oppor- tunities for future advancements in the automation of insomnia detection. While the current techniques have shown promising results, there is still room for improvement in terms of accuracy and reliability. Future developments in technology and machine learning algorithms could help address these limitations and enable more effective and efficient identification of insomnia. .

2.
Cureus ; 15(3): e35867, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37033572

RESUMO

The aim of the present study was to develop and design software-based "virtual patient" for learning functional diagnosis with clinical reasoning of respiratory dysfunction based on need analysis and perception of faculty and student on utility in the undergraduate physiotherapy curriculum. The objective of the study was to design a framework of a respiratory case scenario that includes personal details, history taking, physical examination, differential diagnosis, investigations, functional impairment, and diagnosis, design a prototype of the virtual patient case scenario using software in a virtual environment created in oculus quest, obtain faculty and student feedback, and analyze the feedback. The result of the study obtained on feedback analysis suggests that the virtual patient case scenario (prototype) contains the relevant information in an organized and sequenced manner. The virtual patient case scenario on the virtual reality platform will be helpful as a teaching and learning modality. The study concluded that the present virtual simulated case scenario (prototype) with more cases helps to develop functional diagnosis and clinical reasoning skills as a part of the undergraduate physiotherapy curriculum.

3.
Med Eng Phys ; 112: 103956, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36842776

RESUMO

Healthy sleep signifies a good physical and mental state of the body. However, factors such as inappropriate work schedules, medical complications, and others can make it difficult to get enough sleep, leading to various sleep disorders. The identification of these disorders requires sleep stage classification. Visual evaluation of sleep stages is time intensive, placing a significant strain on sleep experts and prone to human errors. As a result, it is crucial to develop machine learning algorithms to score sleep stages to acquire an accurate diagnosis. Hence, a new methodology for automated sleep stage classification is suggested using machine learning and filtering electroencephalogram (EEG) signals. The national sleep research resource's (NSRR) study of osteoporotic fractures (SOF) dataset comprising 453 subjects' polysomnograph (PSG) data is used in this study. Only two unipolar EEG derivations C4-A1 and C3-A2 are employed individually and jointly in this work. The EEG signals are decomposed into sub-bands using a frequency-localized finite orthogonal quadrature Fejer Korovkin wavelet filter bank. The wavelet-based entropy features are extracted from sub-bands. Subsequently, extracted features are classified using machine learning techniques. Our developed model obtained the highest classification accuracy of 81.3%, using an ensembled bagged trees classifier with a 10-fold cross-validation method and Cohen's Kappa coefficient of 0.72. The proposed model is accurate, dependable, and easy to implement and can be employed as an alternative to a PSG-based system at home with minimal resources. It is also ready to be tested on other EEG data to evaluate the sleep stages of healthy and unhealthy subjects.


Assuntos
Osteoporose , Fraturas por Osteoporose , Humanos , Feminino , Idoso , Sono , Fases do Sono , Polissonografia , Algoritmos , Eletroencefalografia/métodos , Osteoporose/complicações
4.
Comput Biol Med ; 146: 105594, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35659118

RESUMO

Sleep contributes to more than a third of a person's life, making sleep monitoring essential for overall well-being. Cyclic alternating patterns (CAP) are crucial in monitoring sleep quality and associated illnesses such as insomnia, nocturnal frontal lobe epilepsy (NFLE), narcolepsy, etc. However, traditionally medical specialists practice manual division techniques of CAP phases which are sensitive to human weariness and inaccuracies. This might result in a false sleep stage diagnosis. This study proposes an automated approach using a deep learning model based on a 1-dimensional convolutional neural network for classifying CAP phases (A and B). The proposed model uses single-channel standardized electroencephalogram (EEG) recordings provided by the CAP sleep database. The model was created with the help of healthy participants and patients suffering from five distinct sleep disorders, which includes narcolepsy, rapid eye movement behaviour disorder (RBD), periodic leg movement disorder (PLM), NFLE, and insomnia. The developed model has achieved the highest automated classification accuracy of 78.84% for the healthy dataset and 82.21%, 79.48%, 78.73%, 76.68%, and 70.88% for narcolepsy, RBD, PLM, NFLE, and insomnia subjects, respectively in categorizing phases A and B. The proposed approach can help medical professionals monitor sleep and examine a person's brain stability.


Assuntos
Narcolepsia , Distúrbios do Início e da Manutenção do Sono , Transtornos do Sono-Vigília , Eletroencefalografia , Humanos , Redes Neurais de Computação , Polissonografia , Sono , Fases do Sono
5.
Comput Biol Med ; 119: 103691, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32339125

RESUMO

Sleep is one of the most important body mechanisms responsible for the proper functioning of human body. Cyclic alternating patterns (CAP) play an indispensable role in the analysis of sleep quality and related disorders like nocturnal front lobe epilepsy, insomnia, narcolepsy etc. The traditional manual segregation methods of CAP phases by the medical experts are prone to human fatigue and errors which may lead to inaccurate diagnosis of sleep stages. In this paper, we present an automated approach for the classification of CAP phases (A and B) using Wigner-Ville Distribution (WVD) and Rényi entropy (RE) features. The WVD provides a high-resolution time-frequency analysis of the signals whereas RE provides least time-frequency uncertainty with WVD. The classification is performed using medium Gaussian kernel-based support vector machine with 10-fold cross-validation technique. We have presented the results for randomly sampled balanced data sets. The proposed approach does not require any pre-processing or post-processing stages, making it simple as compared to the existing techniques. The proposed method is able to achieve an average classification accuracy of 72.35% and 87.45% for balanced and unbalanced data sets respectively. The proposed method can aid the medical experts to analyze the cerebral stability as well as the sleep quality of a person.


Assuntos
Eletroencefalografia , Fases do Sono , Entropia , Humanos , Sono , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...