Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nat Prod Res ; : 1-12, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932233

RESUMO

Three new eudesmane type rare sesquiterpene lactone galactosides, costunosides A-C (1-3) were isolated from the rhizomes of Aucklandia costus along with ten known compounds (4-13). Costunosides A-C (1-3) are the first example of naturally eudesmane glycosides containing a ß-galactopyranoside moiety. The structure and relative configurations of these compounds were established by comprehensive analysis of MS and, in particular 1D/2D NMR spectroscopic data. The isolated compounds were tested against a panel of human cancer cell lines, where compounds 3, 6 and 7 have shown promising cytotoxic activity against PC-3, HCT-116 and A549 cell lines with IC50 values in the range of 3.4 µM to 9.3 µM, respectively. Costunosides A-C (1-3) were also screened for inhibition assay of acetyl-cholinesterase (AChE), and butyrylcholinesterase (BChE) and found inactive at a concentration of 10 µM.

2.
ACS Omega ; 8(35): 31914-31927, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37692233

RESUMO

Natural product-derived molecules exhibit potential as anticancer agents. Trilliumoside A, a new steroidal saponin, was obtained from rhizomes of Trillium govanianum, and its anticancer activity was investigated in the presented study. Trilliumoside A was investigated in a panel of cell lines, and it exhibited promising cytotoxic activity on the A549 cells (human lung cancer cells) with an IC50 of 1.83 µM. The mechanism of cell death induced by Trilliumoside A in A549 cells and its anticancer potential in murine tumor models (EAC and EAT) were presented in the current research. Trilliumoside A was found to induce apoptosis in A549 cells by increasing the expression of various apoptotic proteins, such as Bax, Puma, cytochrome C, cleaved PARP, and cleaved caspase 3. Additionally, Trilliumoside A regulates the expression of p53, CDK2, and Cyclin A by decreasing the mitochondrial membrane potential, elevating reactive oxygen species, and stopping the growth of A549 cells in the synthesis phase (S) of the cell cycle. Trilliumoside A showed a considerable reduction in the tumor volume, the amount of ascitic fluid, and the total cell number without affecting the body weight of animals. Our results demonstrate that Trilliumoside A inhibits the proliferation of human lung cancer cells by inducing DNA damage, arresting the cell cycle, and activating the mitochondrial signaling pathway. The study demonstrated the potential of Trilliumoside A as a potential anticancer agent.

3.
Molecules ; 28(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37375368

RESUMO

Aucklandia costus Falc. (Synonym: Saussurea costus (Falc.) Lipsch.) is a perennial herb of the family Asteraceae. The dried rhizome is an essential herb in the traditional systems of medicine in India, China and Tibet. The important pharmacological activities reported for Aucklandia costus are anticancer, hepatoprotective, antiulcer, antimicrobial, antiparasitic, antioxidant, anti-inflammatory and anti-fatigue activities. The objective of this study was the isolation and quantification of four marker compounds in the crude extract and different fractions of A. costus and the evaluation of the anticancer activity of the crude extract and its different fractions. The four marker compounds isolated from A. costus include dehydrocostus lactone, costunolide, syringin and 5-hydroxymethyl-2-furaldehyde. These four compounds were used as standard compounds for quantification. The chromatographic data showed good resolution and excellent linearity (r2 ˃ 0.993). The validation parameters, such as inter- and intraday precision (RSD < 1.96%) and analyte recovery (97.52-110.20%; RSD < 2.00%),revealed the high sensitivity and reliability of the developed HPLC method. The compounds dehydrocostus lactone and costunolide were concentrated in the hexane fraction (222.08 and 65.07 µg/mg, respectively) and chloroform fraction (99.02 and 30.21 µg/mg, respectively), while the n-butanol fraction is a rich source of syringin (37.91 µg/mg) and 5-hydroxymethyl-2-furaldehyde (7.94 µg/mg). Further, the SRB assay was performed for the evaluation of anticancer activity using lung, colon, breast and prostate cancer cell lines. The hexane and chloroform fractions show excellent IC50 values of 3.37 ± 0.14 and 7.527 ± 0.18 µg/mL, respectively, against the prostate cancer cell line (PC-3).


Assuntos
Neoplasias , Saussurea , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Saussurea/química , Hexanos , Clorofórmio , Reprodutibilidade dos Testes
4.
Nat Prod Res ; 37(22): 3902-3908, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36525466

RESUMO

Sickle cell disease (SCD) is a rare inherited disorder in which red blood cells (RBCs) under oxidative stress have altered sickle shape resulting in clinical complications. In this study, a library of pure natural products were screened to see their effectiveness in preventing sickling induced in blood samples of SCA patients, ex-vivo. The results indicated that baicalin (1) and naringenin (2), reduced sickling by 46.03 and 37.48 percent, respectively, compared to positive control, 4-hydroxybenzoic acid (4-HBA), which inhibited RBC sickling by 56.87 percent. As a result of this screening, two compounds, baicalin (1) and naringenin (2), have been identified as potent sickling inhibitors. Study has clearly shown promising role of flavonoids for the management of SCD crisis for that not effective therapy is available. These phytochemicals or plant extracts can be explored further as an alternative anti-sickling remedy, owing to their high efficacy in the management of SCD crisis.

5.
Nat Prod Res ; 37(4): 535-541, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35468012

RESUMO

Natural value-added compounds produced from biological sources have attained immense significance in medicinal, food, flavourings, and agrochemical industries. Further, biotransformation is a powerful tool used to produce value-added compounds cost-effectively and selectively. In the present study, biotransformation of eugenol using an endophytic fungus Daldinia sp. IIIMF4010 isolated from the fresh leaves of the plant Rosmarinus officinalis leads to the production of two known value-added compounds. The biotransformation reaction of eugenol (50 mM) resulted in the production of eugenol-ß-D-glucopyranoside (6.2%) and vanillin (21.8%). These biotransformed products were further characterized by liquid chromatography-mass spectroscopy (LC-MS) and nuclear magnetic resonance (NMR).


Assuntos
Rosmarinus , Xylariales , Eugenol/química , Xylariales/metabolismo , Espectroscopia de Ressonância Magnética , Biotransformação
6.
Front Chem ; 11: 1306271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188932

RESUMO

Two novel steroidal saponins, trilliumosides K (1) and L (2), were isolated from the rhizomes of Trillium govanianum led by bioactivity-guided phytochemical investigation along with seven known compounds: govanoside D (3), protodioscin (4), borassoside E (5), 20-hydroxyecdysone (6), 5,20-hydroxyecdysone (7), govanic acid (8), and diosgenin (9). The structure of novel compounds 1-2 was established using analysis of spectroscopic data including 1D and 2D nuclear magnetic resonance (NMR) and high resolution mass spectrometry (HR-ESI-MS) data. All isolated compounds were evaluated for in vitro cytotoxic activity against a panel of human cancer cell lines. Compound 1 showed significant cytotoxic activity against the A-549 (Lung) and SW-620 (Colon) cancer cell lines with IC50 values of 1.83 and 1.85 µM, respectively whereas the IC50 value of Compound 2 against the A-549 cell line was found to be 1.79 µM. Among the previously known compounds 3, 5, and 9, the cytotoxic IC50 values were found to be in the range of 5-10 µM. Comprehensive anti-cancer investigation revealed that Compound 2 inhibited in vitro migration and colony-forming capability in the A-549 cell line. Additionally, the mechanistic analysis of Compound 2 on the A-549 cell line indicated distinctive alterations in nuclear morphology, increased reactive oxygen species (ROS) production, and decreased levels of mitochondrial membrane potential (MMP). By upregulating the pro-apoptotic protein BAX and downregulating the anti-apoptotic protein BCL-2, the aforementioned actions eventually cause apoptosis, a crucial hallmark in cancer research, which activates Caspase-3. To the best of our knowledge, this study reports the first mechanistic anti-cancer evaluation of the compounds isolated from the rhizomes of T. govanianum with remarkable cytotoxic activity in the desired micromolar range.

7.
Diabetes ; 71(8): 1694-1705, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594378

RESUMO

Identifying the mechanisms behind the ß-cell adaptation to failure is important to develop strategies to manage type 2 diabetes (T2D). Using db/db mice at early stages of the disease process, we took advantage of unbiased RNA sequencing to identify genes/pathways regulated by insulin resistance in ß-cells. We demonstrate herein that islets from 4-week-old nonobese and nondiabetic leptin receptor-deficient db/db mice exhibited downregulation of several genes involved in cell cycle regulation and DNA repair. We identified the transcription factor Yin Yang 1 (YY1) as a common gene between both pathways. The expression of YY1 and its targeted genes was decreased in the db/db islets. We confirmed the reduction in YY1 expression in ß-cells from diabetic db/db mice, mice fed a high-fat diet (HFD), and individuals with T2D. Chromatin immunoprecipitation sequencing profiling in EndoC-ßH1 cells, a human pancreatic ß-cell line, indicated that YY1 binding regions regulate cell cycle control and DNA damage recognition and repair. We then generated mouse models with constitutive and inducible YY1 deficiency in ß-cells. YY1-deficient mice developed diabetes early in life due to ß-cell loss. ß-Cells from these mice exhibited higher DNA damage, cell cycle arrest, and cell death as well as decreased maturation markers. Tamoxifen-induced YY1 deficiency in mature ß-cells impaired ß-cell function and induced DNA damage. In summary, we identified YY1 as a critical factor for ß-cell DNA repair and cell cycle progression.


Assuntos
Diabetes Mellitus Tipo 2 , Fator de Transcrição YY1/metabolismo , Animais , Ciclo Celular/genética , Reparo do DNA/genética , Diabetes Mellitus Tipo 2/genética , Humanos , Camundongos , Fator de Transcrição YY1/genética , Yin-Yang
8.
Front Microbiol ; 13: 790339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35422783

RESUMO

Phylum Nematoda is of great economic importance. It has been a focused area for various research activities in distinct domains across the globe. Among nematodes, there is a group called entomopathogenic nematodes, which has two families that live in symbiotic association with bacteria of genus Xenorhabdus and Photorhabdus, respectively. With the passing years, researchers have isolated a wide array of bioactive compounds from these symbiotically associated nematodes. In this article, we are encapsulating bioactive compounds isolated from members of the family Heterorhabditidae inhabiting Photorhabdus in its gut. Isolated bioactive compounds have shown a wide range of biological activity against deadly pathogens to both plants as well as animals. Some compounds exhibit lethal effects against fungi, bacteria, protozoan, insects, cancerous cell lines, neuroinflammation, etc., with great potency. The main aim of this article is to collect and analyze the importance of nematode and its associated bacteria, isolated secondary metabolites, and their biomedical potential, which can serve as potential leads for further drug discovery.

9.
Bot Stud ; 63(1): 12, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35467168

RESUMO

BACKGROUND: The root drugs of the family Apocynaceae are medicinally important and used in Indian Systems of Medicine (ISM). There is often a problem of misidentification and adulteration of genuine samples with other samples in the market trade. Keeping in view the adulteration problem of raw drug material, comparative macroscopic and microscopic (qualitative and quantitative) characterisation and chemical analysis (TLC and LC-MS profiling) of a total of 14 economically important root drugs of family Apocynaceae were done for practical and rapid identification. A total of 33 qualitative botanical characteristics of root samples were subjected to Principal Component Analysis (PCA) and Cluster analysis to identify taxonomically significant characteristics in the distinction of root drug samples at the species level. RESULTS: Comparative qualitative and quantitative data on morphological, macroscopic, and microscopic characters were generated for the studied 14 species. Despite the similarity in some root characters, a combined study involving the surface, anatomical, and powder features helped distinguish root samples at the species level. The relative relationship between selected species was represented as clustering or grouping in the dendrogram. PCA analysis determined significant characters leading to species grouping and identification. Results showed that clustering of xylem vessels in cross-section, pore size, and distribution in the cut root, the shape of starch grains, the thickness of cork zone were among the most notable characters in species distinction. Chemical profiling revealed unique fingerprints and content of chemical compounds, which were significant in identification of root drug samples. CONCLUSIONS: The comparative botanical standards and chemical profiles developed in the present study can be used as future reference standards for the quick, easy, and correct identification of root drug samples to be used in the herbal drug industry. Further, the identified significant microscopic characters have the potential for taxonomic studies in species delimitation.

10.
Med ; 2(8): 938-950, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34617070

RESUMO

BACKGROUND: The failure of immune surveillance to remove senescent cells drive age-related diseases. Here, we target an endogenous immune surveillance mechanism that can promote elimination of senescent cells and reverse disease progression. METHODS: We identify a class of lipid-activated T cells, invariant natural killer T cells (iNKTs) are involved in the removal of pathologic senescent cells. We use two disease models in which senescent cells accumulate to test whether activation of iNKT cells was sufficient to eliminate senescent cells in vivo. FINDINGS: Senescent preadipocytes accumulate in white adipose tissue of chronic high-fat diet (HFD) fed mice, and activation of iNKT cells with the prototypical glycolipid antigen alpha-galactosylceramide (αGalCer) led to a reduction of these cells with improved glucose control. Similarly, senescent cells accumulate within the lungs of mice injured by inhalational bleomycin, and αGalCer-induced activation of iNKT cells greatly limited this accumulation, decreased the lung fibrosis and improved survival. Furthermore, co-culture experiments showed that the preferential cytotoxic activity of iNKT cells to senescent cells is conserved in human cells. CONCLUSIONS: These results uncover a senolytic capacity of tissue-resident iNKT cells and pave the way for anti-senescence therapies that target these cells and their mechanism of activation.


Assuntos
Células T Matadoras Naturais , Animais , Senescência Celular , Dieta Hiperlipídica , Contagem de Linfócitos , Camundongos
11.
Med ; 2(8): 895-898, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-35590165

RESUMO

In this backstory, Anil Bhushan explains how recent work from his group investigating the immune-mediated clearance of senescent cells may offer a unique route to the development of senolytic therapies. These findings appeared in the May 2021 issue of Med (https://www.cell.com/med/fulltext/S2666-6340(21)00163-X).


Assuntos
Comunicação Celular , Senescência Celular
12.
Int J Mol Sci ; 20(19)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561444

RESUMO

Type 1 diabetes (T1D) results from the progressive loss of pancreatic beta cells as a result of autoimmune destruction. We recently reported that during the natural history of T1D in humans and the female nonobese diabetic (NOD) mouse model, beta cells acquire a senescence-associated secretory phenotype (SASP) that is a major driver of disease onset and progression, but the mechanisms that activate SASP in beta cells were not explored. Here, we show that the SASP in islet cells is transcriptionally controlled by Bromodomain ExtraTerminal (BET) proteins, including Bromodomain containing protein 4 (BRD4). A chromatin analysis of key beta cell SASP genes in NOD islets revealed binding of BRD4 at active regulatory regions. BET protein inhibition in NOD islets diminished not only the transcriptional activation and secretion of SASP factors, but also the non-cell autonomous activity. BET protein inhibition also decreased the extent of SASP induction in human islets exposed to DNA damage. The BET protein inhibitor iBET-762 prevented diabetes in NOD mice and also attenuated SASP in islet cells in vivo. Taken together, our findings support a crucial role for BET proteins in the activation of the SASP transcriptional program in islet cells. These studies suggest avenues for preventing T1D by transcriptional inhibition of SASP.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Senescência Celular/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Animais , Diabetes Mellitus Tipo 1/imunologia , Feminino , Humanos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/imunologia , Camundongos , Camundongos Endogâmicos NOD , Comunicação Parácrina , Ligação Proteica
13.
J Clin Invest ; 129(10): 4124-4137, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31265435

RESUMO

Pancreatic beta cells (ß-cells) differentiate during fetal life, but only postnatally acquire the capacity for glucose-stimulated insulin secretion (GSIS). How this happens is not clear. In exploring what molecular mechanisms drive the maturation of ß-cell function, we found that the control of cellular signaling in ß-cells fundamentally switched from the nutrient sensor target of rapamycin (mTORC1) to the energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK), and that this was critical for functional maturation. Moreover, AMPK was activated by the dietary transition taking place during weaning, and this in turn inhibited mTORC1 activity to drive the adult ß-cell phenotype. While forcing constitutive mTORC1 signaling in adult ß-cells relegated them to a functionally immature phenotype with characteristic transcriptional and metabolic profiles, engineering the switch from mTORC1 to AMPK signaling was sufficient to promote ß-cell mitochondrial biogenesis, a shift to oxidative metabolism, and functional maturation. We also found that type 2 diabetes, a condition marked by both mitochondrial degeneration and dysregulated GSIS, was associated with a remarkable reversion of the normal AMPK-dependent adult ß-cell signature to a more neonatal one characterized by mTORC1 activation. Manipulating the way in which cellular nutrient signaling pathways regulate ß-cell metabolism may thus offer new targets to improve ß-cell function in diabetes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/genética , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Secreção de Insulina/genética , Células Secretoras de Insulina/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Knockout
14.
Diabetes ; 68(9): 1806-1818, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31201281

RESUMO

Transcription factors positively and/or negatively impact gene expression by recruiting coregulatory factors, which interact through protein-protein binding. Here we demonstrate that mouse pancreas size and islet ß-cell function are controlled by the ATP-dependent Swi/Snf chromatin remodeling coregulatory complex that physically associates with Pdx1, a diabetes-linked transcription factor essential to pancreatic morphogenesis and adult islet cell function and maintenance. Early embryonic deletion of just the Swi/Snf Brg1 ATPase subunit reduced multipotent pancreatic progenitor cell proliferation and resulted in pancreas hypoplasia. In contrast, removal of both Swi/Snf ATPase subunits, Brg1 and Brm, was necessary to compromise adult islet ß-cell activity, which included whole-animal glucose intolerance, hyperglycemia, and impaired insulin secretion. Notably, lineage-tracing analysis revealed Swi/Snf-deficient ß-cells lost the ability to produce the mRNAs for Ins and other key metabolic genes without effecting the expression of many essential islet-enriched transcription factors. Swi/Snf was necessary for Pdx1 to bind to the Ins gene enhancer, demonstrating the importance of this association in mediating chromatin accessibility. These results illustrate how fundamental the Pdx1:Swi/Snf coregulator complex is in the pancreas, and we discuss how disrupting their association could influence type 1 and type 2 diabetes susceptibility.


Assuntos
Proliferação de Células/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , DNA Helicases/metabolismo , Proteínas de Homeodomínio/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas Nucleares/metabolismo , Pâncreas/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , DNA Helicases/genética , Regulação da Expressão Gênica , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Proteínas de Homeodomínio/genética , Insulina/sangue , Células Secretoras de Insulina/citologia , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Pâncreas/citologia , Transativadores/genética , Fatores de Transcrição/genética
15.
Nat Cell Biol ; 21(6): 792, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30914825

RESUMO

In the version of this article originally published, the Gene Expression Omnibus (GEO) accession number listed in the data availability section was incorrectly given as GSE10979 instead of GSE109795. The sentence should read "RNA-seq data that support the findings of this study have been deposited in the Gene Expression Omnibus (GEO) under accession code GSE109795," and the code should link to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109795. The error has been corrected in the HTML and PDF versions of the paper.

16.
Nat Cell Biol ; 21(2): 263-274, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30710150

RESUMO

Despite advances in the differentiation of insulin-producing cells from human embryonic stem cells, the generation of mature functional ß cells in vitro has remained elusive. To accomplish this goal, we have developed cell culture conditions to closely mimic events occurring during pancreatic islet organogenesis and ß cell maturation. In particular, we have focused on recapitulating endocrine cell clustering by isolating and reaggregating immature ß-like cells to form islet-sized enriched ß-clusters (eBCs). eBCs display physiological properties analogous to primary human ß cells, including robust dynamic insulin secretion, increased calcium signalling in response to secretagogues, and improved mitochondrial energization. Notably, endocrine cell clustering induces metabolic maturation by driving mitochondrial oxidative respiration, a process central to stimulus-secretion coupling in mature ß cells. eBCs display glucose-stimulated insulin secretion as early as three days after transplantation in mice. In summary, replicating aspects of endocrine cell clustering permits the generation of stem-cell-derived ß cells that resemble their endogenous counterparts.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células Endócrinas/citologia , Fibroblastos/citologia , Células-Tronco Embrionárias Humanas/citologia , Células Secretoras de Insulina/citologia , Animais , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Células Endócrinas/fisiologia , Fibroblastos/fisiologia , Glucose/farmacologia , Células-Tronco Embrionárias Humanas/fisiologia , Humanos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/citologia , Camundongos , Mitocôndrias/metabolismo
17.
Cell Metab ; 29(5): 1045-1060.e10, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30799288

RESUMO

Type 1 diabetes (T1D) is an organ-specific autoimmune disease characterized by hyperglycemia due to progressive loss of pancreatic beta cells. Immune-mediated beta cell destruction drives the disease, but whether beta cells actively participate in the pathogenesis remains unclear. Here, we show that during the natural history of T1D in humans and the non-obese diabetic (NOD) mouse model, a subset of beta cells acquires a senescence-associated secretory phenotype (SASP). Senescent beta cells upregulated pro-survival mediator Bcl-2, and treatment of NOD mice with Bcl-2 inhibitors selectively eliminated these cells without altering the abundance of the immune cell types involved in the disease. Significantly, elimination of senescent beta cells halted immune-mediated beta cell destruction and was sufficient to prevent diabetes. Our findings demonstrate that beta cell senescence is a significant component of the pathogenesis of T1D and indicate that clearance of senescent beta cells could be a new therapeutic approach for T1D.


Assuntos
Senescência Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/prevenção & controle , Hiperglicemia/metabolismo , Hiperglicemia/prevenção & controle , Células Secretoras de Insulina/metabolismo , Adolescente , Adulto , Idoso , Animais , Compostos de Bifenilo/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Fibroblastos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Nitrofenóis/farmacologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/farmacologia , Células THP-1 , Adulto Jovem
18.
Diabetes ; 68(2): 337-348, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30425060

RESUMO

The sustained expression of the MAFB transcription factor in human islet ß-cells represents a distinct difference in mice. Moreover, mRNA expression of closely related and islet ß-cell-enriched MAFA does not peak in humans until after 9 years of age. We show that the MAFA protein also is weakly produced within the juvenile human islet ß-cell population and that MafB expression is postnatally restricted in mouse ß-cells by de novo DNA methylation. To gain insight into how MAFB affects human ß-cells, we developed a mouse model to ectopically express MafB in adult mouse ß-cells using MafA transcriptional control sequences. Coexpression of MafB with MafA had no overt impact on mouse ß-cells, suggesting that the human adult ß-cell MAFA/MAFB heterodimer is functionally equivalent to the mouse MafA homodimer. However, MafB alone was unable to rescue the islet ß-cell defects in a mouse mutant lacking MafA in ß-cells. Of note, transgenic production of MafB in ß-cells elevated tryptophan hydroxylase 1 mRNA production during pregnancy, which drives the serotonin biosynthesis critical for adaptive maternal ß-cell responses. Together, these studies provide novel insight into the role of MAFB in human islet ß-cells.


Assuntos
Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Maf Maior/metabolismo , Fator de Transcrição MafB/metabolismo , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Cromossomos Artificiais Bacterianos/genética , Metilação de DNA/genética , Metilação de DNA/fisiologia , Feminino , Humanos , Técnicas In Vitro , Fatores de Transcrição Maf Maior/genética , Fator de Transcrição MafB/genética , Camundongos , Camundongos Transgênicos , Gravidez , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
19.
Cell Cycle ; 16(22): 2183-2191, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28763258

RESUMO

Diabetes results from an inadequate mass of functional ß cells, due to either ß cell loss caused by autoimmune destruction (type I diabetes) or ß cell failure in response to insulin resistance (type II diabetes). Elucidating the mechanisms that regulate ß cell mass may be key to developing new techniques that foster ß cell regeneration as a cellular therapy to treat diabetes. While previous studies concluded that cyclin D2 is required for postnatal ß cell self-renewal in mice, it is not clear if cyclin D2 is sufficient to drive ß cell self-renewal. Using transgenic mice that overexpress cyclin D2 specifically in ß cells, we show that cyclin D2 overexpression increases ß cell self-renewal post-weaning and results in increased ß cell mass. ß cells that overexpress cyclin D2 are responsive to glucose stimulation, suggesting they are functionally mature. ß cells that overexpress cyclin D2 demonstrate an enhanced regenerative capacity after injury induced by streptozotocin toxicity. To understand if cyclin D2 overexpression is sufficient to drive ß cell self-renewal, we generated a novel mouse model where cyclin D2 is only expressed in ß cells of cyclin D2-/- mice. Transgenic overexpression of cyclin D2 in cyclin D2-/- ß cells was sufficient to restore ß cell mass, maintain normoglycaemia, and improve regenerative capacity when compared with cyclin D2-/- littermates. Taken together, our results indicate that cyclin D2 is sufficient to regulate ß cell self-renewal and that manipulation of its expression could be used to enhance ß cell regeneration.


Assuntos
Ciclina D2/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Ciclina D2/genética , Diabetes Mellitus/genética , Glucose/farmacologia , Resistência à Insulina/genética , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos
20.
J Clin Invest ; 127(1): 94-97, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27941244

RESUMO

Pancreatic ß cells have one of the highest protein secretion burdens in the body, as these cells must synthesize and secrete insulin in proportion to postprandial rises in blood glucose. Remarkably, it is now becoming clear that adult ß cells retain plasticity and can dedifferentiate into embryonic fates or adopt alternate islet endocrine cell identities. This property is especially important, because changes in cell fate alter ß cell function and could form the basis for defects in insulin secretion that occur early in the pathogenesis of the most prevalent form of ß cell dysfunction, type 2 diabetes. In this issue, three different studies provide complementary perspectives on how the transcription factors NK2 homeobox 2 (NKX2.2), paired box 6 (PAX6), and LIM domain-binding protein 1 (LDB1) serve to maintain mature adult ß cell identity, revealing clues as to how adult ß cells can partially dedifferentiate or become reprogrammed into other islet endocrine cells.


Assuntos
Proteínas de Ligação a DNA/imunologia , Diabetes Mellitus Tipo 2/imunologia , Proteínas de Homeodomínio/imunologia , Células Secretoras de Insulina/imunologia , Proteínas com Domínio LIM/imunologia , Fator de Transcrição PAX6/imunologia , Fatores de Transcrição/imunologia , Animais , Diabetes Mellitus Tipo 2/patologia , Proteína Homeobox Nkx-2.2 , Humanos , Células Secretoras de Insulina/patologia , Proteínas Nucleares , Proteínas de Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...