Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 220: 111461, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33882424

RESUMO

Lactoperoxidase (LPO) is a mammalian heme peroxidase which catalyzes the conversion of thiocyanate (SCN¯) and iodide (I-) by hydrogen peroxide (H2O2) into antimicrobial hypothiocyanite (OSCN¯) and hypoiodite (IO-). The prosthetic heme group is covalently attached to LPO through two ester linkages involving conserved glutamate and aspartate residues. On the proximal side, His351 is coordinated to heme iron while His 109 is located in the substrate binding site on the distal heme side. We report here the first structure of the ternary complex of LPO with iodide (I-) and H2O2 at 1.77 Å resolution. LPO was crystallized with ammonium iodide and the crystals were soaked in the reservoir solution containing H2O2. Structure determination showed the presence of an iodide ion and a H2O2 molecule in the substrate binding site. The iodide ion occupied the position which is stabilized by the interactions with heme moiety, His109, Arg255 and Glu258 while H2O2 was held between the heme iron and His109. The presence of I- in the distal heme cavity seems to screen the positive charge of Arg255 thus suppressing the proton transfer from H2O2 to His109. This prevents compound I formation and allows trapping of a stable enzyme-substrate (LPO-I--H2O2) ternary complex. This stable geometrical arrangement of H2O2 in the distal heme cavity of LPO is similar to that of H2O2 in the structure of the transient intermediate of the palm tree heme peroxidase. The biochemical studies showed that the catalytic activity of LPO decreased when the samples of LPO were preincubated with ammonium iodide.


Assuntos
Peróxido de Hidrogênio/metabolismo , Iodetos/metabolismo , Lactoperoxidase/metabolismo , Animais , Sítios de Ligação , Bovinos , Colostro/enzimologia , Cristalografia por Raios X , Peróxido de Hidrogênio/química , Iodetos/química , Lactoperoxidase/química , Ligação Proteica , Estrutura Terciária de Proteína
2.
FEBS Open Bio ; 4: 915-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25389518

RESUMO

Peptidyl-tRNA hydrolase (Pth) catalyses the release of tRNA and peptide components from peptidyl-tRNA molecules. Pth from a Gram-positive bacterium Streptococcus pyogenes (SpPth) was cloned, expressed, purified and crystallised. Three-dimensional structure of SpPth was determined by X-ray crystallography at 2.19 Å resolution. Structure determination showed that the asymmetric unit of the unit cell contained two crystallographically independent molecules, designated A and B. The superimposition of C(α) traces of molecules A and B showed an r.m.s. shift of 0.4 Å, indicating that the structures of two crystallographically independent molecules were identical. The polypeptide chain of SpPth adopted an overall α/ß conformation. The substrate-binding cleft in SpPth is formed with three loops: the gate loop, Ile91-Leu102; the base loop, Gly108-Gly115; and the lid loop, Gly136-Gly150. Unlike in the structures of Pth from Gram-negative bacteria, the entry to the cleft in the structure of SpPth appeared to be virtually closed. However, the conformations of the active site residues were found to be similar.

3.
Biochem J ; 463(3): 329-37, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25101795

RESUMO

During the course of protein synthesis in the cell, the translation process is often terminated due to various reasons. As a result, peptidyl-tRNA molecules are released which are toxic to the cell as well reducing the availability of free amino acid and tRNA molecules for the required protein synthesis in the cell. Such a situation is corrected by an enzyme, Pth (peptidyl-tRNA hydrolase), which catalyses the release of free tRNA and peptide moieties from peptidyl-tRNAs. This means that the active Pth is essential for the survival of bacteria. In order to design inhibitors of PaPth (Pth from Pseudomonas aeruginosa), we determined the structures of PaPth in its native and bound states with compounds amino acylate-tRNA analogue and 5-azacytidine. The structure determination of the native protein revealed that the substrate-binding site was partially occupied by Glu161 from the neigh-bouring molecule. The structure of PaPth indicated that the substrate-binding site can be broadly divided into three distinct subsites. The structures of the two complexes showed that the amino acylate-tRNA analogue filled three subsites, whereas 5-azacytidine filled two subsites. The common sugar and the base moieties of the two compounds occupied identical positions in the cleft. Using surface plasmon resonance, the dissociation constants for the amino acylate-tRNA analogue and 5-azacytidine were found to be 3.53×10-8 M and 5.82×10-8 M respectively.


Assuntos
Adenosina/análogos & derivados , Proteínas de Bactérias/química , Hidrolases de Éster Carboxílico/química , Inibidores Enzimáticos/química , Pseudomonas aeruginosa/enzimologia , Tirosina/análogos & derivados , Adenosina/química , Azacitidina/química , Hidrolases de Éster Carboxílico/antagonistas & inibidores , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Ligação de Hidrogênio , Conformação Proteica , Relação Estrutura-Atividade , Tirosina/química
4.
FEBS J ; 281(12): 2871-82, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24798798

RESUMO

Bovine lactoferrin, a 76-kDa glycoprotein (Ala1-Arg689) consists of two similar N- and C-terminal molecular halves with the ability to bind two Fe(3+) ions. The N-terminal half, designated as the N-lobe (Ala1-Arg341) and the C-terminal half designated as the C-lobe (Tyr342-Arg689) have similar iron-binding properties, but the resistant C-lobe prolongs the physiological role of bovine lactoferrin in the digestive tract. Here, we report the crystal structure of true C-lobe, which was produced by limited proteolysis of bovine lactoferrin using trypsin. In the first proteolysis step, two fragments of 21 kDa (Glu86-Lys282) and 45 kDa (Ser283-Arg689) were generated because two lysine residues, Lys85 and Lys282, in the structure of iron-saturated bovine lactoferrin were fully exposed. The 45-kDa fragment was further digested at the newly exposed side chain of Arg341, generating a 38-kDa perfect C-lobe (Tyr342-Arg689). By contrast, the apo-lactoferrin was cut by trypsin only at Arg341, which was exposed in the structure of apo-lactoferrin, whereas the other two sites with Lys85 and Lys282 are inaccessible. The purified iron-saturated C-lobe was crystallized at pH 4.0. The structure was determined by the molecular replacement method using coordinates of the C-terminal half (Arg342-Arg689) of intact camel apo-lactoferrin. The structure determination revealed that the iron atom was absent and the iron-binding cleft was found in a wide-open conformation, whereas in the previously determined structure of iron-saturated C-lobe of bovine lactoferrin, the iron atom was present and the iron-binding site was in the closed confirmation.


Assuntos
Mucosa Intestinal/metabolismo , Lactoferrina/química , Tripsina/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Lactoferrina/biossíntese , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
5.
FEBS J ; 277(13): 2868-82, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20528916

RESUMO

A novel plant protein isolated from the underground bulbs of Scadoxus multiflorus, xylanase and alpha-amylase inhibitor protein (XAIP), inhibits two structurally and functionally unrelated enzymes: xylanase and alpha-amylase. The mature protein contains 272 amino acid residues which show sequence identities of 48% to the plant chitinase hevamine and 36% to xylanase inhibitor protein-I, a double-headed inhibitor of GH10 and GH11 xylanases. However, unlike hevamine, it is enzymatically inactive and, unlike xylanase inhibitor protein-I, it inhibits two functionally different classes of enzyme. The crystal structure of XAIP has been determined at 2.0 A resolution and refined to R(cryst) and R(free) factors of 15.2% and 18.6%, respectively. The polypeptide chain of XAIP adopts a modified triosephosphate isomerase barrel fold with eight beta-strands in the inner circle and nine alpha-helices forming the outer ring. The structure contains three cis peptide bonds: Gly33-Phe34, Tyr159-Pro160 and Trp253-Asp254. Although hevamine has a long accessible carbohydrate-binding channel, in XAIP this channel is almost completely filled with the side-chains of residues Phe13, Pro77, Lys78 and Trp253. Solution studies indicate that XAIP inhibits GH11 family xylanases and GH13 family alpha-amylases through two independent binding sites located on opposite surfaces of the protein. Comparison of the structure of XAIP with that of xylanase inhibitor protein-I, and docking studies, suggest that loops alpha3-beta4 and alpha4-beta5 may be involved in the binding of GH11 xylanase, and that helix alpha7 and loop beta6-alpha6 are suitable for the interaction with alpha-amylase.


Assuntos
Endo-1,4-beta-Xilanases/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , alfa-Amilases/antagonistas & inibidores , Sequência de Aminoácidos , Cristalografia por Raios X , Inibidores Enzimáticos/isolamento & purificação , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/isolamento & purificação , Raízes de Plantas/química , Alinhamento de Sequência , Relação Estrutura-Atividade
6.
Arch Biochem Biophys ; 500(2): 196-202, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20515646

RESUMO

Three COX-2-specific non-steroidal anti-inflammatory drugs (NSAIDs), etoricoxib, parecoxib, and nimesulide are widely prescribed against inflammatory conditions. However, their long term administration leads to severe conditions of cardiovascular complications and gastric ulceration. In order to minimize these side effects, C-terminal half (C-lobe) of colostrum protein lactoferrin has been indicated to be useful if co-administered with NSAIDs. Lactoferrin is an 80kDa glycoprotein with two similar halves designated as N- and C-lobes. Since NSAID-binding site is located in the C-terminal half of lactoferrin, C-lobe was prepared from lactoferrin by limited proteolysis using proteinase K. The incubation of lactoferrin with serine proteases for extended periods showed that N-lobe was completely digested but C-lobe was resistant for more than 72h indicating its long half life in the animal gut. The solution studies have shown that COX-2-specific NSAIDs bind to C-lobe with binding constants ranging from 10(-4) to 10(-5)M showing significant affinities for sequestering these compounds. In order to understand the mode of binding and sequestering properties, the complexes of C-lobe with all these three compounds, etoricoxib, parecoxib, and nimesulide were prepared and the structures of their complexes with C-lobe were determined at 2.2, 2.9, and 2.7A resolutions, respectively. The analysis of the structures of complexes of C-lobe with NSAIDs clearly show that all the three compounds bind firmly at the same ligand-binding site in the C-lobe revealing the details of the interactions between C-lobe and NSAIDs. The mode of binding of COX-2-specific NSAIDs to C-lobe is similar to that of the binding of COX-2 non-specific NSAIDs to C-lobe.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Inibidores de Ciclo-Oxigenase 2/metabolismo , Lactoferrina/química , Lactoferrina/metabolismo , Animais , Sítios de Ligação , Bovinos , Cristalografia por Raios X , Etoricoxib , Técnicas In Vitro , Isoxazóis/metabolismo , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Piridinas/metabolismo , Sulfonamidas/metabolismo , Sulfonas/metabolismo
7.
Int J Biol Macromol ; 47(1): 50-9, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20371371

RESUMO

Bovine lactoferrin has been shown to reduce the levels of glucose in both normal subjects and non-insulin dependent diabetic patients. The binding studies have shown that various sugar molecules interact with lactoferrin indicating the presence of a sugar-binding site in the protein. Structural studies have revealed that the sugar-binding site is located in the C-terminal half (C-lobe) of bilobal lactoferrin. Since the sugar-binding site was part of the C-lobe, it was better to carry out binding and structural studies using C-lobe rather than the full protein molecule. Therefore, C-lobe was prepared by limited proteolysis of lactoferrin with enzyme proteinase K. It was purified to homogeneity for further studies. The addition of C-lobe to human serum showed significant lowering of glucose levels. The binding studies using C-lobe with nine sugars, glucose, galactose, mannose, xylose, maltose, cellobiose, lactose, sucrose and dextrin gave values of binding constants in the range of 10(-4) to 10(-5)M. The structure determinations of the complexes of C-lobe with all the nine sugars showed that all of them interact with C-lobe through the same recognition site involving several hydrogen bonds and van der Waals interactions.


Assuntos
Sacarose Alimentar/química , Lactoferrina/química , Animais , Bovinos , Endopeptidase K/química , Humanos , Ligação de Hidrogênio , Ligação Proteica , Estrutura Terciária de Proteína
8.
J Biol Chem ; 285(2): 1569-76, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-19907057

RESUMO

Isoniazid (INH) is an anti-tuberculosis prodrug that is activated by mammalian lactoperoxidase and Mycobacterium tuberculosis catalase peroxidase (MtCP). We report here binding studies, an enzyme assay involving INH, and the crystal structure of the complex of bovine lactoperoxidase (LPO) with INH to illuminate binding properties and INH activation as well as the mode of diffusion and interactions together with a detailed structural and functional comparison with MtCP. The structure determination shows that isoniazid binds to LPO at the substrate binding site on the distal heme side. The substrate binding site is connected to the protein surface through a long hydrophobic channel. The acyl hydrazide moiety of isoniazid interacts with Phe(422) O, Gln(423) O(epsilon1), and Phe(254) O. In this arrangement, pyridinyl nitrogen forms a hydrogen bond with a water molecule, W-1, which in turn forms three hydrogen bonds with Fe(3+), His(109) N(epsilon2), and Gln(105) N(epsilon2). The remaining two sides of isoniazid form hydrophobic interactions with the atoms of heme pyrrole ring A, C(beta) and C(gamma) atoms of Glu(258), and C(gamma) and C(delta) atoms of Arg(255). The binding studies indicate that INH binds to LPO with a value of 0.9 x 10(-6) m for the dissociation constant. The nitro blue tetrazolium reduction assay shows that INH is activated by the reaction of LPO-H(2)O(2) with INH. This suggests that LPO can be used for INH activation. It also indicates that the conversion of INH into isonicotinoyl radical by LPO may be the cause of INH toxicity.


Assuntos
Antituberculosos/química , Heme/química , Isoniazida/química , Lactoperoxidase/química , Pró-Fármacos/química , Animais , Proteínas de Bactérias/química , Sítios de Ligação , Bovinos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Mycobacterium tuberculosis/enzimologia , Peroxidases/química , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
9.
Biophys J ; 97(12): 3178-86, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20006955

RESUMO

Nonsteroidal antiinflammatory drugs (NSAIDs), due to their good efficacy in the treatment of pain, inflammation, and fever, are among the most prescribed class of medicines in the world. The main drawback of NSAIDs is that they induce gastric complications such as peptic ulceration and injury to the intestine. Four NSAIDs, indomethacin, diclofenac, aspirin, and ibuprofen were selected to induce gastropathy in mouse models. It was found that the addition of C-terminal half of bovine lactoferrin (C-lobe) reversed the NSAID-induced injuries to the extent of 47-70% whereas the coadministration of C-lobe prevented it significantly. The C-lobe was prepared proteolytically using serine proteases. The binding studies of C-lobe with NSAIDs showed that these compounds bind to C-lobe with affinities ranging from 2.6 to 4.8 x 10(-4) M. The complexes of C-lobe were prepared with the above four NSAIDs. All four complexes were crystallized and their detailed three-dimensional structures were determined using x-ray crystallographic method. The structures showed that all the four NSAID molecules bound to C-lobe at the newly identified ligand binding site in C-lobe that is formed involving two alpha-helices, alpha10 and alpha11. The ligand binding site is separated from the well known iron binding site by the longest and the most stable beta-strand, betaj, in the structure. Similar results were also obtained with the full length lactoferrin molecule. This novel, to our knowledge, binding site in C-lobe of lactoferrin shows a good complementarity for the acidic and lipophilic compounds such as NSAIDs. We believe this indicates that C-lobe of lactoferrin can be exploited for the prevention of NSAID-induced gastropathy.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Colostro , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/patologia , Lactoferrina/química , Lactoferrina/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Sítios de Ligação , Bovinos , Feminino , Hemorragia Gastrointestinal/prevenção & controle , Trato Gastrointestinal/metabolismo , Lactoferrina/metabolismo , Camundongos , Modelos Moleculares , Conformação Molecular , Peroxidase/metabolismo , Gravidez
10.
J Biol Chem ; 284(30): 20311-8, 2009 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-19465478

RESUMO

The binding and structural studies of bovine lactoperoxidase with three aromatic ligands, acetylsalicylic acid (ASA), salicylhydoxamic acid (SHA), and benzylhydroxamic acid (BHA) show that all the three compounds bind to lactoperoxidase at the substrate binding site on the distal heme side. The binding of ASA occurs without perturbing the position of conserved heme water molecule W-1, whereas both SHA and BHA displace it by the hydroxyl group of their hydroxamic acid moieties. The acetyl group carbonyl oxygen atom of ASA forms a hydrogen bond with W-1, which in turn makes three other hydrogen-bonds, one each with heme iron, His-109 N(epsilon2), and Gln-105 N(epsilon2). In contrast, in the complexes of SHA and BHA, the OH group of hydroxamic acid moiety in both complexes interacts with heme iron directly with Fe-OH distances of 3.0 and 3.2A respectively. The OH is also hydrogen bonded to His-109 N(epsilon2) and Gln-105N(epsilon2). The plane of benzene ring of ASA is inclined at 70.7 degrees from the plane of heme moiety, whereas the aromatic planes of SHA and BHA are nearly parallel to the heme plane with inclinations of 15.7 and 6.2 degrees , respectively. The mode of ASA binding provides the information about the mechanism of action of aromatic substrates, whereas the binding characteristics of SHA and BHA indicate the mode of inhibitor binding.


Assuntos
Aspirina/metabolismo , Ácidos Hidroxâmicos/metabolismo , Lactoperoxidase/química , Lactoperoxidase/metabolismo , Salicilamidas/metabolismo , Animais , Aspirina/química , Sítios de Ligação , Bovinos , Cristalografia por Raios X , Heme/química , Heme/metabolismo , Ligação de Hidrogênio , Ácidos Hidroxâmicos/química , Lactoperoxidase/antagonistas & inibidores , Lactoperoxidase/isolamento & purificação , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Salicilamidas/química
11.
J Biol Chem ; 284(22): 14849-56, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19339248

RESUMO

The crystal structure of the complex of lactoperoxidase (LPO) with its physiological substrate thiocyanate (SCN(-)) has been determined at 2.4A resolution. It revealed that the SCN(-) ion is bound to LPO in the distal heme cavity. The observed orientation of the SCN(-) ion shows that the sulfur atom is closer to the heme iron than the nitrogen atom. The nitrogen atom of SCN(-) forms a hydrogen bond with a water (Wat) molecule at position 6'. This water molecule is stabilized by two hydrogen bonds with Gln(423) N(epsilon2) and Phe(422) oxygen. In contrast, the placement of the SCN(-) ion in the structure of myeloperoxidase (MPO) occurs with an opposite orientation, in which the nitrogen atom is closer to the heme iron than the sulfur atom. The site corresponding to the positions of Gln(423), Phe(422) oxygen, and Wat(6)' in LPO is occupied primarily by the side chain of Phe(407) in MPO due to an entirely different conformation of the loop corresponding to the segment Arg(418)-Phe(431) of LPO. This arrangement in MPO does not favor a similar orientation of the SCN(-) ion. The orientation of the catalytic product OSCN(-) as reported in the structure of LPO.OSCN(-) is similar to the orientation of SCN(-) in the structure of LPO.SCN(-). Similarly, in the structure of LPO.SCN(-).CN(-), in which CN(-) binds at Wat(1), the position and orientation of the SCN(-) ion are also identical to that observed in the structure of LPO.SCN.


Assuntos
Lactoperoxidase/química , Lactoperoxidase/metabolismo , Mamíferos/metabolismo , Tiocianatos/química , Animais , Bovinos , Cristalografia por Raios X , Heme/química , Conformação Proteica , Eletricidade Estática , Especificidade por Substrato
12.
Acta Crystallogr D Biol Crystallogr ; 61(Pt 8): 1107-15, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16041076

RESUMO

The crystal structure of the zinc-saturated C-terminal lobe of bovine lactoferrin has been determined at 2.0 A resolution using crystals stabilized at pH 3.8. This is the first metal-saturated structure of any functional lactoferrin at such a low pH. Purified samples of proteolytically generated zinc-saturated C-terminal lobe were crystallized from 0.1 M MES buffer pH 6.5 containing 25%(v/v) polyethyleneglycol monomethyl ether 550 and 0.1 M zinc sulfate heptahydrate. The crystals were transferred to 25 mM ammonium acetate buffer containing 25%(v/v) polyethyleneglycol monomethyl ether 550 and the pH was gradually changed from 6.5 to 3.8. The X-ray intensity data were collected with a 345 mm imaging-plate scanner mounted on an RU-300 rotating-anode X-ray generator using crystals soaked in the buffer at pH 3.8. The structure was determined with the molecular-replacement method using the coordinates of the monoferric C-terminal lobe of bovine lactoferrin as a search model and was refined to an R factor of 0.192 for all data to 2.0 A resolution. The final model comprises 2593 protein atoms (residues 342-676 and 681-685), 138 carbohydrate atoms (from 11 monosaccharide units in three glycan chains), three Zn2+ ions, one CO3(2-) ion, one SO(4)2- ions and 227 water molecules. The overall folding of the present structure is essentially similar to that of the monoferric C-terminal lobe of bovine lactoferrin, although it contains Zn2+ in place of Fe3+ in the metal-binding cleft as well as two additional Zn2+ ions on the surface of the C-terminal lobe. The Zn2+ ion in the cleft remains bound to the lobe with octahedral coordination. The bidentate carbonate ion is stabilized by a network of hydrogen bonds to Ala465, Gly466, Thr459 and Arg463. The other two zinc ions also form sixfold coordinations involving symmetry-related protein and water molecules. The number of monosaccharide residues from the three glycan chains of the C-terminal lobe was 11, which is the largest number observed to date. The structure shows that the C-terminal lobe of lactoferrin is capable of sequestering a Zn2+ ion at a pH of 3.8. This implies that the zinc ions can be sequestered over a wide pH range. The glycan chain attached to Asn545 may also have some influence on iron release from the C-terminal lobe.


Assuntos
Cristalografia por Raios X/métodos , Lactoferrina/química , Zinco/química , Animais , Sítios de Ligação , Bovinos , Concentração de Íons de Hidrogênio , Luz , Modelos Moleculares , Estrutura Terciária de Proteína , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...