Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Braz J Microbiol ; 55(2): 1897-1911, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38727923

RESUMO

Plant growth promoting rhizobacteria (PGPR) are also known to colonize in the soil rhizosphere and prevent the development of other soil borne pathogens residing in the root surface. These microorganisms play a vital role in growth and development of the plant and also enhances the soil fertility by enriching the soil with different beneficial nutrients. This study was aimed at isolation of different rhizobacteria and their molecular characterization in search of efficient bacterial strains with multiple growth regulating activities. A total 36 bacteria were isolated from lentil root nodule as well as soil from different lentil growing fields with a view to screen/evaluate their plant growth promoting potential. Morphological characterization of isolated rhizobacterial candidates were done by observing the colonies on YEMA and nutrient agar media. Determination of CFU, Congo red test and gram staining tests were done to further screen them according to their morphology. All the isolates were then undergone molecular phylogenetic analysis using the partial sequences of the 16 S rDNA. Based upon the Gram staining test, all the isolates were negative in gram reaction except six Bacillus isolates, PSB2 and AB3. Results of Ribosomal Database Project (RDP) and Basic Local Alignment Search Tool for Nucleotide Sequences (BLASTn) from 16 S rDNA gene sequences showed that these isolates are genetically diverse. A total of 15 isolates of Rhizobium, 6 isolates of Bacillus, 3 isolates of Pseudomonas, 2 isolates of Phosphate Solubilizing Bacteria, 4 isolates of actinomycetes were identified by molecular sequencing of their 16 S rDNA region and comparing them with the other isolates enlisted in the database of NCBI for the similarity percentage, query coverage. The purpose of the present study was to select native rhizosphere bacteria from the lentil nodule and soil of Lentil field and to evaluate their plant growth promoting potential as an alternative of chemical fertilizer for sustainable, environment friendly agriculture and assessment of their phylogenetic characterization.


Assuntos
Bactérias , DNA Bacteriano , Lens (Planta) , Filogenia , RNA Ribossômico 16S , Rizosfera , Microbiologia do Solo , Lens (Planta)/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Raízes de Plantas/microbiologia , Índia , DNA Ribossômico/genética
2.
ACS Biomater Sci Eng ; 10(3): 1235-1261, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38335198

RESUMO

Fibrosis has been characterized as a global health problem and ranks as one of the primary causes of organ dysfunction. Currently, there is no cure for pulmonary fibrosis, and limited therapeutic options are available due to an inadequate understanding of the disease pathogenesis. The absence of advanced in vitro models replicating dynamic temporal changes observed in the tissue with the progression of the disease is a significant impediment in the development of novel antifibrotic treatments, which has motivated research on tissue-mimetic three-dimensional (3D) models. In this review, we summarize emerging trends in preparing advanced lung models to recapitulate biochemical and biomechanical processes associated with lung fibrogenesis. We begin by describing the importance of in vivo studies and highlighting the often poor correlation between preclinical research and clinical outcomes and the limitations of conventional cell culture in accurately simulating the 3D tissue microenvironment. Rapid advancement in biomaterials, biofabrication, biomicrofluidics, and related bioengineering techniques are enabling the preparation of in vitro models to reproduce the epithelium structure and operate as reliable drug screening strategies for precise prediction. Improving and understanding these model systems is necessary to find the cross-talks between growing cells and the stage at which myofibroblasts differentiate. These advanced models allow us to utilize the knowledge and identify, characterize, and hand pick medicines beneficial to the human community. The challenges of the current approaches, along with the opportunities for further research with potential for translation in this field, are presented toward developing novel treatments for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/patologia , Pulmão/patologia , Técnicas de Cultura de Células
3.
Indian Pediatr ; 60(12): 1043, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38087791
4.
Cureus ; 15(6): e40544, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37465785

RESUMO

Introduction The formation of palatal rugae is completed in the early intrauterine stage, and because of their unique and permanent pattern in each individual, they can be utilized in forensics to identify a person. Objective The primary objective of this study was to determine an association between the rugae pattern and the dental malocclusion system described by Angle. Materials and methods A prospective cross-sectional, observational study was conducted on pretreatment dental casts of 400 subjects in an age range of 18-40 years. The samples were divided according to Angle's system of classification of malocclusion into Class I, Class II, and Class III. The number, length, pattern, and orientation of the three anterior-most primary rugae on both sides of the palatal region were studied. Results Significant differences were noted in the mean number of palatal rugae and mean lengths of rugae 1 and 2 on the right side (p < 0.001) and rugae 3 on the left (p < 0.001) side among the different malocclusion groups. Curved and wavy patterns were predominant, and significant differences were found among the groups (p < 0.05), whereas non-significant differences were observed in the rugae orientation between the groups on the right and left sides. Conclusions The current study showed significant differences in the length, number, and pattern of the palatal rugae among Angle's classes of malocclusion. Clinical implications Palatal rugae can be effectively used to identify dental malocclusion at an early stage and can, therefore, help intercept the developing malocclusion.

5.
BioTech (Basel) ; 11(2)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35822792

RESUMO

Post-translational modifications ("PTMs") in monoclonal antibodies (mAbs) contribute to charge variant distribution, which will affect biological efficacy and safety. For the characterization of mAbs, charge variants are used as a critical quality attributes for product quality, stability consistency and effectiveness. Charge variants in mAbs are characterized by a time-consuming and a multistep process starting from cation/anion exchange chromatography, acidic/basic fractions collection and subsequent reverse phase (RP) liquid chromatography, coupled with mass spectrometry (MS) analysis. Hence, an alternative characterization approach that would be highly selective for ion exchange chromatography-based charge variant analysis, which is compatible with on-line MS detection, is needed in the biopharma industry. Against this backdrop, multiple studies are being conducted to develop a simple straight on-line charge variant analysis method. In this regard, we apply the current study, which aims to develop a charge variant analytical method, based on volatile buffers with low ionic strength that can be used for on-line MS detection of charge variants of mAbs. This would enable the detection on "PTMs" using low ionic strength mobile phase compatible with MS. Hence, fruitful data can be obtained with a single chromatography run without any test sample preparation, eliminating the need for multiple steps of analysis, time-consuming process and multiple sample preparation steps. Thus, Charge Variant Analysis-MS technique will allow the characterization of charge-related PTMs on the intact protein stage. In this regard, this study is about development of a method having combination of chromatography and volatile mobile phase for mass spectrometry detection of mAbs being analyzed in native form. The method is qualified considering pharmacopeia guidelines because the ultimate aim is to transfer this method for Quality Control (QC) release testing of a monoclonal antibody, which is critical for batch release and the regulatory point of view. Acidic and basic variants have been separated with high resolution peak profile. Furthermore, there was no matrix interference and good separation selectivity in terms of specificity was obtained using this method. The experimental data suggested for the linearity of the method are 2.4 mg/mL to 3.6 mg/mL with % RSD below 2.0%. Additionally, Limit of Quantitation is found to be 0.15 mg/mL, which is 5% of loading amount. Consistently, the data show that the method is precise under the same operating conditions with a short time interval. Overall a simple, accurate, robust and precise pH gradient cation exchange chromatography method was developed and qualified for the characterization of a therapeutic native mAb. Additionally, this method can be used to claim a biosimilar product profile of an in-house product compare to an innovator.

6.
Mol Biotechnol ; 64(3): 221-244, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34628588

RESUMO

The annual herb, Ageratum conyzoides L. (Asteraceae), is distributed throughout the world. Although invasive, it can be very useful as a source of essential oils, pharmaceuticals, biopesticides, and bioenergy. However, very limited information exists on the molecular basis of its different utility as previous investigations were mainly focused on phytochemical/biological activity profiling. Here we have explored various properties of A. conyzoides that may offer environmental, ecological, agricultural, and health benefits. As this aromatic plant harbors many important secondary metabolites that may have various implications, biotechnological interventions such as genomics, metabolomics and tissue-culture can be indispensable tools for their mass-production. Further, A. conyzoides acts as a natural reservoir of begomoviruses affecting a wide range of plant species. As the mechanisms of disease spreading and crop infection are not fully clear, whole-genome sequencing and various advanced molecular technologies including RNAi, CRISPER/Cas9, multi-omics approaches, etc., may aid to decipher the molecular mechanism of such disease development and thus, can be useful in crop protection. Overall, improved knowledge of A. conyzoides is not only essential for developing sustainable weed control strategy but can also offer potential ways for biomedicinal, environment, safe and clean agriculture applications.


Assuntos
Ageratum/química , Begomovirus/patogenicidade , Extratos Vegetais/química , Ageratum/virologia , Agricultura , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Metabolismo Secundário
7.
Phytochem Rev ; 21(3): 879-913, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34366748

RESUMO

Ocimum species represent commercially important medicinal and aromatic plants. The essential oil biosynthesized by Ocimum species is enriched with specialized metabolites specifically, terpenoids and phenylpropanoids. Interestingly, various Ocimum species are known to exhibit diverse chemical profiles, and this chemical diversity has been at the center of many studies to identify commercially important chemotypes. Here, we present various chemotypes from the Ocimum species and emphasize trends, implications, and strategies for the quality and yield improvement of essential oil. Globally, many Ocimum species have been analyzed for their essential oil composition in over 50 countries. Asia represents the highest number of chemotypes, followed by Africa, South America, and Europe. Ocimum basilicum L. has been the most widespread and well-studied species, followed by O. gratissimum L., O. tenuiflorum L., O. canum Sims, O. americanum and O. kilimandscharicum Gürke. Moreover, various molecular reasons, benefits, adverse health effects and mechanisms behind this vast chemodiversity have been discussed. Different strategies of plant breeding, metabolic engineering, transgenic, and tissue-culture, along with anatomical modifications, are surveyed to enhance specific chemotypic profiles and essential oil yield in numerous Ocimum species. Consequently, chemical characterization of the essential oil obtained from Ocimum species has become indispensable for its proper utilization. The present chemodiversity knowledge from Ocimum species will help to exploit various applications in the industrial, agriculture, biopharmaceutical, and food sectors. Supplementary Information: The online version contains supplementary material available at 10.1007/s11101-021-09767-z.

8.
Anim Genet ; 53(1): 68-79, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34729794

RESUMO

The live attenuated classical swine fever (CSF) vaccine has been successfully used to prevent and control CSF outbreaks for 6 decades. However, the immune response mechanisms against the vaccine remain poorly understood. Moreover, very few reports exist regarding the breed differences in the response to CSF vaccine. In this study, we generated the peripheral blood mononuclear cell transcriptomes of indigenous Ghurrah and commercial Landrace pig breeds, before and 7 days after CSF vaccination. Subsequently, between and within-breed differential gene expression analyses were carried out. Results revealed large differences in pre-vaccination peripheral blood mononuclear cell transcriptome profiles of the two breeds, which were homogenised 7 days after vaccination. Before vaccination, gene set enrichment analysis showed that pathways related to antigen sensing and innate immune response were enriched in Ghurrah, while pathways related to adaptive immunity were enriched in Landrace. Ghurrah exhibited greater immunomodulation compared to Landrace following the vaccination. In Ghurrah, cell-cycle processes and T-cell response pathways were upregulated after vaccination. However, no pathways were upregulated in Landrace after vaccination. Pathways related to inflammation were downregulated in both the breeds after vaccination. Key regulators of inflammation such as IL1A, IL1B, NFKBIA and TNF genes were strongly downregulated in both the breeds after vaccination. Overall, our results have elucidated the mechanisms of host immune response against CSF vaccination in two distinct breeds and revealed common key genes instrumental in the global immune response to the vaccine.


Assuntos
Peste Suína Clássica/imunologia , Imunidade Inata , Transcriptoma/imunologia , Vacinas Virais/administração & dosagem , Animais , Feminino , Especificidade da Espécie , Sus scrofa , Suínos
9.
Int J Infect Dis ; 111: 281-287, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34428542

RESUMO

OBJECTIVE: To evaluate the efficacy and safety of pegylated interferon alpha-2b (PEG IFN-α2b) administered in conjunction with the standard of care (SOC) in subjects with moderate coronavirus disease-19 (COVID-19). METHODS: In this study, adult subjects with confirmed moderate COVID-19 were randomized in a 1:1 ratio to receive either PEG IFN-α2b + SOC or SOC alone. The primary endpoint was a two-point improvement in clinical status on Day 11, measured by the World Health Organization's seven-point ordinal scale. RESULTS: Of 250 subjects, 120 were randomized to the PEG IFN-α2b + SOC arm and 130 were randomized to the SOC arm. The results for the PEG IFN + SOC arms vs the SOC arm for the proportion of subjects with a two-point improvement in the seven-point ordinal scale were 80.36% vs 68.18% (P=0.037) on Day 8, 91.60% vs 92.56% (P=0.781) on Day 11, and 94.12% vs 95.93% (P=0.515) on Day 15. There was a time-dependent decrease in the biomarkers in both arms, and no clinically significant changes in laboratory parameters. The safety profile was similar in both arms. CONCLUSION: PEG IFN-α2b induced early viral clearance, improved the clinical status, and decreased the duration of supplemental oxygen. It provides a viable treatment option and can limit the spread of severe acute respiratory syndrome coronavirus-2.


Assuntos
COVID-19 , Adulto , Antivirais/efeitos adversos , Humanos , Interferon alfa-2 , Interferon-alfa/efeitos adversos , Polietilenoglicóis/efeitos adversos , Proteínas Recombinantes , SARS-CoV-2 , Resultado do Tratamento
11.
Br Poult Sci ; 62(6): 783-794, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34047227

RESUMO

1. Ovalbumin (SERPINB14) is the most abundant protein present in egg white contributing about 54% of the total egg protein. In this study, the objectives were to clone and characterise the coding sequence of the SERPINB14 gene, to explore its expression profile, identify polymorphisms in the promoter of the gene and explore any association with egg quality traits in White Leghorn chickens.2. SNPs and mRNA expression of SERPINB14 in White Leghorn chicken lines were detected by PCR-single strand conformation polymorphism (SSCP) along with sequencing and qPCR. The open reading frame (ORF) was cloned in an expression plasmid vector and sequenced.3. The ORF of this gene was 1161 bp encoding a peptide of 386 amino acids. There were three SNPs observed in the coding region of the gene, one of which was of the mis-sense type, having c562G>A transition which resulted in substitution of alanine to threonine at position 188 in the protein sequence. In both the lines, an increase in expression of the gene was observed after onset of egg production with peak expression at the 40th week of age compared to before onset of lay. The SERPINB14 gene was expressed in the magnum, but not in ovary and infundibulum, tissues of each White Leghorn line. The promoter region of the gene showed SNPs with three haplotypes; H1, H2, and H3. The haplo groups were associated with the egg weight and age at sexual maturity in the IWI line and Haugh unit and albumin index in the IWK line.4. It was concluded that the ORF of SERPINB14 gene in White Leghorn chicken lines is polymorphic. The promoter region of the gene is also polymorphic and has significant (P < 0.05) association with Haugh unit and egg weight in IWK and IWI chicken lines, respectively.


Assuntos
Proteínas Aviárias/genética , Galinhas , Polimorfismo de Nucleotídeo Único , Serpinas/genética , Animais , Galinhas/genética , Clonagem Molecular , Feminino , Fenótipo , Polimorfismo Conformacional de Fita Simples , Regiões Promotoras Genéticas
12.
Int J Infect Dis ; 105: 516-521, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33713817

RESUMO

OBJECTIVE: To evaluate the efficacy and safety of pegylated interferon alfa-2b (PEG IFN-α2b) along with the standard of care (SOC) in subjects with moderate COVID-19. METHODS: In this phase 2, randomized, open-label study, adult subjects aged ≥18 years with RT-PCR confirmed COVID-19 with moderate symptoms were randomized in a 1:1 to receive PEG IFN-α2b plus SOC, or SOC alone. The primary endpoint was improvement in clinical status on day 15, measured by the WHO 7-point ordinal scale. RESULTS: Forty subjects were randomized to PEG IFN-α2b plus SOC (n = 20) and SOC (n = 20). Overall, 19 (95.00%) subjects in PEG IFN-α2b plus SOC had achieved clinical improvement on day 15 compared to 13 (68.42%) subjects in SOC (p < 0.05). Overall, 80% and 95% of subjects in the PEG IFN-α2b plus SOC group had a negative RT-PCR result on day 7 and day 14, respectively, compared to 63% and 68% in the SOC group. Adverse events (AEs) were reported for eleven subjects in the PEG IFN-α2b plus SOC group and eight subjects in the SOC group. All reported AEs were mild. CONCLUSION: The significant improvement in clinical status on day 15 is likely due to faster viral reduction compared to SOC with the PEG IFN-α2b treated moderate COVID-19 subjects showing a difference as early as day seven and becoming significant by day 14.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Interferon alfa-2/uso terapêutico , Interferon-alfa/uso terapêutico , Polietilenoglicóis/uso terapêutico , SARS-CoV-2 , Adulto , Idoso , Feminino , Humanos , Interferon alfa-2/efeitos adversos , Interferon-alfa/efeitos adversos , Masculino , Pessoa de Meia-Idade , Polietilenoglicóis/efeitos adversos , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/uso terapêutico
13.
Planta ; 253(2): 61, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33538903

RESUMO

MAIN CONCLUSION: During the process of plant domestication, the selection and traditional breeding for desired characters such as flavor, juiciness and nutritional value of fruits, probably have resulted in gain or loss of specialized metabolites contributing to these traits. Their appearance in fruits is likely due to the acquisition of novel and specialized metabolic pathways and their regulation, driven by systematic molecular evolutionary events facilitated by traditional breeding. Plants change their armory of specialized metabolism to adapt and survive in diverse ecosystems. This may occur through molecular evolutionary events, such as single nucleotide polymorphism, gene duplication and transposition, leading to convergent or divergent evolution of biosynthetic pathways producing such specialized metabolites. Breeding and selection for improved specific and desired traits (fruit size, color, taste, flavor, etc.) in fruit crops through conventional breeding approaches may further alter content and profile of specialized metabolites. Biosynthetic routes of these metabolites have been studied in various plants. Here, we explore the influence of plant domestication and breeding processes on the selection of biosynthetic pathways of favorable specialized metabolites in fruit crops. An orderly clustered arrangement of genes associated with their production is observed in many fruit crops. We further analyzed selection-based acquisition of specialized metabolic pathways comparing first the metabolic profiles and genes involved in their biosynthesis, followed by the genomic organization of such genes between wild and domesticated horticultural crops. Domestication of crop plants favored the acquisition and retention of metabolic pathways that enhanced the fruit value while eliminated those which produced toxic or unfavorable metabolites. Interestingly, unintentional reorganization of complex metabolic pathways by selection and traditional breeding processes has endowed us with flavorful, juicy and nutritionally rich fruits.


Assuntos
Produtos Agrícolas/metabolismo , Domesticação , Frutas , Redes e Vias Metabólicas , Melhoramento Vegetal , Produtos Agrícolas/genética , Ecossistema , Frutas/genética , Frutas/metabolismo
14.
Mol Biotechnol ; 62(10): 508-520, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32844356

RESUMO

Globally farmers have difficulty in extending the shelf-life of the tropical fruits due to their perishable nature. The present study aimed to assess the effect of hexanal nano-formulation treatment (NFT) on the shelf-life of Alphonso mango. Further, volatilomics was performed to explore the molecular basis of such effect. Untreated and treated fruits were sampled starting from 5th to 21st day after NFT at an interval of 4 days. Moderate changes in visual and digital colour parameters were evident from the intact and dissected fruits of NFT set compared to untreated fruits. Biochemical assays affirmed the phenotypic differences with significant changes in the colour imparting compounds like carotenoids and anthocyanins among them. Further, gas chromatography-mass spectrometry analysis revealed significant qualitative and quantitative variations in the different classes of compounds like lactones, furanones, esters, aldehydes and alcohols. Some of the key metabolites showed differential modulations among the NFT and untreated fruit sets indicating their potential role in various processes, which ultimately might have resulted in delayed ripening of the mango. Overall, this study has demonstrated the beneficial effect of hexanal and identified important metabolites with the enhanced shelf-life in Alphonso that could be useful for farmers and mango-based food/flavour industries.


Assuntos
Armazenamento de Alimentos , Frutas/metabolismo , Mangifera/metabolismo , Metaboloma , Análise por Conglomerados , Cor , Nanotecnologia , Fenótipo , Pigmentação , Análise de Componente Principal , Espectrofotometria
15.
Hum Exp Toxicol ; 39(11): 1475-1486, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32495665

RESUMO

There is a major concern that exposure to titanium dioxide (TiO2) nanoparticles (NPs) can have degrading effects on human health as well as mammary gland because of the increased use in numerous sorts of nanotech-based health care and food merchandise. Also, there is a scarcity in NP toxicity studies on the mammary gland; therefore, the aim of the present study was to compare toxicity caused by nano- and bulk-phase TiO2 particles on the human mammary gland in vitro. In comparison to bulk-TiO2 particles, nano-TiO2 cause a significant (p < 0.05) reduction in viability and increased reactive oxygen species generation in the human mammary epithelial cells after a dose- (1, 2, 5, 10, 20, 50, and 100 µg/mL) and time (6, 12, 24, and 48 h)-dependent exposure. Further, an increase in genotoxicity in the mammary epithelial cells was observed as percent tail DNA and comet area was increased significantly (p < 0.05) at 12 h of exposure (10 and 100 µg/mL) with nano-TiO2. The scanning electron microscopic examination showed that a 50 µg/mL dose of both nano-TiO2 and bulk-TiO2 particles cause morphological changes and retarded growth pattern of mammary epithelial cells at 12 h. Moreover, a significant (p < 0.05) increase in apoptosis at 10 µg/mL and necrosis at 50 µg/mL concentrations of nano-TiO2 in comparison to bulk-TiO2 was observed in mammary epithelial cells. Finally, we can conclude that the toxicity caused by nano-TiO2 particles on the human mammary gland cells was comparatively higher than the bulk-TiO2 particles.


Assuntos
Células Epiteliais/efeitos dos fármacos , Glândulas Mamárias Humanas/citologia , Nanopartículas/toxicidade , Titânio/toxicidade , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo
16.
Planta ; 251(1): 28, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31802261

RESUMO

MAIN CONCLUSION: Exploration with high-throughput transcriptomics and metabolomics of two varieties of Ceropegia bulbosa identifies candidate genes, crucial metabolites and a potential cerpegin biosynthetic pathway. Ceropegia bulbosa is an important medicinal plant, used in the treatment of various ailments including diarrhea, dysentery, and syphilis. This is primarily attributed to the presence of pharmaceutically active secondary metabolites, especially cerpegin. As this plant belongs to an endemic threatened category, genomic resources are not available hampering exploration on the molecular basis of cerpegin accumulation till now. Therefore, we undertook high-throughput metabolomic and transcriptomic analyses using different tissues from two varieties namely, C. bulbosa var. bulbosa and C. bulbosa var. lushii. Metabolomic analysis revealed spatial and differential accumulation of various metabolites. We chemically synthesized and characterized the cerpegin and its derivatives by liquid chromatography tandem-mass spectrometry (LC-MS/MS). Importantly, these comparisons suggested the presence of cerpegin and 5-allyl cerpegin in all C. bulbosa tissues. Further, de novo transcriptome analysis indicated the presence of significant transcripts for secondary metabolic pathways through the Kyoto encyclopedia of genes and genomes database. Tissue-specific profiling of transcripts and metabolites showed a significant correlation, suggesting the intricate mechanism of cerpegin biosynthesis. The expression of potential candidate genes from the proposed cerpegin biosynthetic pathway was further validated by qRT-PCR and NanoString nCounter. Overall, our findings propose a potential route of cerpegin biosynthesis. Identified transcripts and metabolites have built a foundation as new molecular resources that could facilitate future research on biosynthesis, regulation, and engineering of cerpegin or other important metabolites in such non-model plants.


Assuntos
Apocynaceae/genética , Apocynaceae/metabolismo , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Metabolômica , Piridonas/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Metaboloma , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Análise de Componente Principal , Piridonas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
17.
BMC Plant Biol ; 19(1): 330, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337343

RESUMO

BACKGROUND: Dioecy is an important sexual system wherein, male and female flowers are borne on separate unisexual plants. Knowledge of sex-related differences can enhance our understanding in molecular and developmental processes leading to unisexual flower development. Coccinia grandis is a dioecious species belonging to Cucurbitaceae, a family well-known for diverse sexual forms. Male and female plants have 22A + XY and 22A + XX chromosomes, respectively. Previously, we have reported a gynomonoecious form (22A + XX) of C. grandis bearing morphologically hermaphrodite flowers (GyM-H) and female flowers (GyM-F). Also, we have showed that foliar spray of AgNO3 on female plant induces morphologically hermaphrodite bud development (Ag-H) despite the absence of Y-chromosome. RESULTS: To identify sex-related differences, total proteomes from male, female, GyM-H and Ag-H flower buds at early and middle stages of development were analysed by label-free proteomics. Protein search against the cucumber protein sequences (Phytozome) as well as in silico translated C. grandis flower bud transcriptome database, resulted in the identification of 2426 and 3385 proteins (FDR ≤ 1%), respectively. The latter database was chosen for further analysis as it led to the detection of higher number of proteins. Identified proteins were annotated using BLAST2GO pipeline. SWATH-MS-based comparative abundance analysis between Female_Early_vs_Male_Early, Ag_Early_vs_Female_Early, GyM-H_Middle_vs_Male_Middle and Ag_Middle_vs_ Male_Middle led to the identification of 650, 1108, 905 and 805 differentially expressed proteins, respectively, at fold change ≥1.5 and P ≤ 0.05. Ethylene biosynthesis-related candidates as highlighted in protein interaction network were upregulated in female buds compared to male buds. AgNO3 treatment on female plant induced proteins related to pollen development in Ag-H buds. Additionally, a few proteins governing pollen germination and tube growth were highly enriched in male buds compared to Ag-H and GyM-H buds. CONCLUSION: Overall, current proteomic analysis provides insights in the identification of key proteins governing dioecy and unisexual flower development in cucurbitaceae, the second largest horticultural family in terms of economic importance. Also, our results suggest that the ethylene-mediated stamen inhibition might be conserved in dioecious C. grandis similar to its monoecious cucurbit relatives. Further, male-biased proteins associated with pollen germination and tube growth identified here can help in understanding pollen fertility.


Assuntos
Cucurbitaceae/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Diferenciação Sexual , Cromossomos de Plantas/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/fisiologia , Proteoma/fisiologia
18.
J Oral Maxillofac Pathol ; 23(1): 97-103, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110424

RESUMO

INTRODUCTION: The tumor-suppressor p53 protein is inactivated by the human papillomavirus (HPV) E6 oncoprotein, causing polymorphism of the p53 at codon 72 of exon either proline (Pro) or arginine (Arg). Specific allele predisposition has been reported in the literature. The association between the p53 allele and HPV types has been reported. We analyzed the association between p53 polymorphism at codon 72 and HPV 16 and 18 genotypes in control, oral submucous fibrosis (OSF) and oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS: Of the total 90 cases, biopsy tissues of all groups (30 cases of OSF, OSCC and control each) were collected to extract DNA. Polymerase chain reaction was used to detect HPV 16 and 18 and alleles of codon 72 in p53 were evaluated in all the samples. RESULTS: In control, OSF and OSCC samples showed the presence HPV 63.3%, 33.3% and 60%, respectively. In OSF, HPV 16 and 18 was detected in four and four cases, respectively, whereas in OSCC, HPV 16 and 18 was detected in ten and nine cases, respectively. In all three groups, predominantly, Arg/Arg protein was present followed by Pro/Pro and Arg/Pro. Among the control, Arg/Arg type protein was frequently seen followed by Arg/Pro, Pro/Pro in the presence of HPV. OSF and OSCC were associated homologous genes in the presence of HPV. CONCLUSION: The definite association between p53 codon 72, polymorphism and HPV 16 and 18 was seen in OSCC with low frequency in OSF. Frequency of homozygous genotype is at high risk in the presence of HPV 16 and 18 in developing OSCC.

19.
Physiol Mol Biol Plants ; 25(1): 47-57, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30804629

RESUMO

Ocimum species produces a varied mix of different metabolites that imparts immense medicinal properties. To explore this chemo-diversity, we initially carried out metabolite profiling of different tissues of five Ocimum species and identified the major terpenes. This analysis broadly classified these five Ocimum species into two distinct chemotypes namely, phenylpropanoid-rich and terpene-rich. In particular, ß-caryophyllene, myrcene, limonene, camphor, borneol and selinene were major terpenes present in these Ocimum species. Subsequently, transcriptomic analysis of pooled RNA samples from different tissues of Ocimum gratissimum, O. tenuiflorum and O. kilimandscharicum identified 38 unique transcripts of terpene synthase (TPS) gene family. Full-length gene cloning, followed by sequencing and phylogenetic analysis of three TPS transcripts were carried out along with their expression in various tissues. Terpenoid metabolite and expression profiling of candidate TPS genes in various tissues of Ocimum species revealed spatial variances. Further, putative TPS contig 19414 (TPS1) was selected to corroborate its role in terpene biosynthesis. Agrobacterium-mediated transient over-expression assay of TPS1 in the leaves of O. kilimandscharicum and subsequent metabolic and gene expression analyses indicated it as a cis-ß-terpineol synthase. Overall, present study provided deeper understanding of terpene diversity in Ocimum species and might help in the enhancement of their terpene content through advanced biotechnological approaches.

20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1306-1309, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946132

RESUMO

The recent development of inexpensive and accurate eye-trackers allows the creation of gazed based virtual keyboards that can be used by a large population of disabled people in developing countries. Thanks to eye-tracking technology, gaze-based virtual keyboards can be designed in relation to constraints related to the gaze detection accuracy and the considered display device. In this paper, we propose a new multimodal multiscript gaze-based virtual keyboard where it is possible to change the layout of the graphical user interface in relation to the script. Traditionally, virtual keyboards are assessed for a single language (e.g. English). We propose a multiscript gaze based virtual keyboard that can be accessed for people who communicate with the Latin, Bangla, and/or Devanagari scripts. We evaluate the performance of the virtual keyboard with two main groups of participants: 28 people who can communicate with both Bangla and English, and 24 people who can communicate with both Devanagari and English. The performance is assessed in relation to the information transfer rate when participants had to spell a sentence using their gaze for pointing to the command, and a dedicated mouth switch for commands selection. The results support the conclusion that the system is efficient, with no difference in terms of information transfer rate between Bangla and Devanagari. However, the performance is higher with English, despite the fact it was the secondary language of the participants.


Assuntos
Interface Usuário-Computador , Pessoas com Deficiência , Humanos , Idioma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA