Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicology ; 28(8): 853-868, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31392634

RESUMO

Two common tropical grassland species, Panicum maximum Jacq. (Guinea grass) and Cenchrus ciliaris (Buffel grass) of Indo-Gangetic plains were assessed for their responses under future level of O3 (ambient +30 ppb) using open top chambers. Plants were assessed for foliar injuries, pigments, growth, biomass accumulation, histochemical localization of reactive oxygen species (ROS), antioxidant defense system and ROS scavenging activities at two stages. Foliar injuries were noticed at an early stage in P. maximum compared to C. ciliaris. Significant reductions were observed in total chlorophyll, growth and total biomass in both species. Significant increases in contents of melondialdehyde and ascorbic acid in P. maximum while total phenolics and thiols in C. ciliaris were found. Histochemical analysis showed more production of superoxide radicals and hydrogen peroxide in leaf tissues of P. maximum compared to C. ciliaris. It can be concluded that higher level of primary antioxidants (total phenolics and thiols) along with superoxide dismutase and ascorbate peroxidase scavenged O3 effectively in C. ciliaris causing less reduction of biomass which is used as a feed for cattles. In P. maximum, more photosynthates were allocated for defense, leading to higher reduction in total biomass compared to C. ciliaris. The leaf area ratio was higher in P. maximum compared to C. ciliaris under elevated O3. The study further suggests higher susceptibility of P. maximum compared to C. ciliaris under future level of O3 exposure.


Assuntos
Poluentes Atmosféricos/toxicidade , Cenchrus/efeitos dos fármacos , Ozônio/toxicidade , Panicum/efeitos dos fármacos , Antioxidantes/metabolismo , Biomassa , Cenchrus/crescimento & desenvolvimento , Cenchrus/fisiologia , Índia , Panicum/crescimento & desenvolvimento , Panicum/fisiologia , Pigmentos Biológicos/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo
2.
Ecotoxicol Environ Saf ; 147: 313-326, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28858704

RESUMO

Ultraviolet (UV)-B radiation and the growth hormone indole-3-acetic acid (IAA) have been known to cause various changes in plants at morphological and physiological levels as individual entities, but their interactive effects on the overall plant performance remain practically unknown. The present study was conducted under near-natural field conditions to evaluate the effects of supplemental (s)-UV-B (ambient+3.6kJm-2day-1) treatment alone, and in combination with two doses of IAA (200ppm and 400ppm) exogenously applied as foliar spray on various growth-, morphological-, physiological-, and biochemical parameters of an indigenous medicinal plant, Coleus forskohlii. Under s-UV-B, the plant growth and morphology were adversely affected (along with reductions in protein- and chlorophyll contents) with concomitant increase in secondary metabolites (as substantiated by an increase in the activities of various enzymes of the phenylpropanoid pathway) and cumulative antioxidative potential (CAP), suggesting the plant's capability of adaptive resilience against UV-B. The essential oil content of the plant was, however, compromised reducing its pharmaceutical value. IAA application at both doses led to a reversal in the effects caused by s-UV-B radiation alone; both the plant growth as well as the essential oil content improved, especially at the higher IAA dose, suggesting its ameliorative role against UV-B induced oxidative stress, and also in improving the plant's medicinal value.


Assuntos
Antioxidantes/metabolismo , Ácidos Indolacéticos/toxicidade , Óleos Voláteis/metabolismo , Reguladores de Crescimento de Plantas/toxicidade , Plectranthus/fisiologia , Raios Ultravioleta/efeitos adversos , Clorofila/metabolismo , Índia , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos da radiação , Plantas Medicinais , Plectranthus/efeitos dos fármacos , Plectranthus/efeitos da radiação
3.
J Proteome Res ; 9(9): 4565-84, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20701290

RESUMO

Ozone (O3), a potent air pollutant and a significant greenhouse gas, has been recognized as a major component of global climate change. However, current increasing trends in its background level are projecting a more severe threat to natural and cultivated plants in the near future. The present study has been designed to evaluate the impact of elevated concentrations of O3 on phenotypical, physiological, and biochemical traits in two high-yielding cultivars of wheat, followed by analysis of the leaf proteome using one/two-dimensional gel electrophoresis (1-/2-DGE) coupled to immunoblotting and mass spectrometry analyses under near-natural conditions using open top chambers. Prominently, O3 exposure caused specific foliar injury in both the wheat cultivars. Results also showed that O3 stress significantly decreased photosynthetic rate, stomatal conductance, and chlorophyll fluorescence kinetics (Fv/Fm) in test cultivars. Biochemical evaluations further revealed a higher loss in photosynthetic pigments, whereas a significantly induced antioxidant system under elevated O3 concentrations pointed toward an ability of O3 to generate oxidative stress. 1-DGE analysis showed drastic reductions in the abundantly present ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) large and small subunits. Western blot analysis confirmed induced accumulation of antioxidative enzymes like superoxide dismutase and ascorbate peroxidase protein(s) and common defense/stress-related thaumatin-like protein(s). 2-DGE analysis revealed a total of 38 differentially expressed protein spots, common in both the wheat cultivars. Among those, some major leaf photosynthetic proteins (including RuBisCO and RuBisCO activase) and important energy metabolism proteins (including ATP synthase, aldolase, and phosphoglycerate kinase) were drastically reduced, whereas some stress/defense-related proteins (such as harpin-binding protein and germin-like protein) were induced. In all, the present study reveals an intimate molecular network provoked by O3 affecting photosynthesis and triggering antioxidative defense and stress-related proteins culminating in accelerated foliar injury in wheat plants.


Assuntos
Ozônio/farmacologia , Proteoma/efeitos dos fármacos , Proteômica/métodos , Triticum/efeitos dos fármacos , Análise de Variância , Western Blotting , Eletroforese em Gel Bidimensional , Espectrometria de Massas , Redes e Vias Metabólicas/efeitos dos fármacos , Estresse Oxidativo , Fotossíntese/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estômatos de Plantas , Proteoma/química , Triticum/metabolismo , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...