Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 300, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816763

RESUMO

Optimizing the efficiency of definitive endoderm (DE) differentiation is necessary for the generation of diverse organ-like structures. In this study, we used the small molecule inhibitor saracatinib (SAR) to enhance DE differentiation of human embryonic stem cells and induced pluripotent stem cells. SAR significantly improved DE differentiation efficiency at low concentrations. The interaction between SAR and Focal Adhesion Kinase (FAK) was explored through RNA-seq and molecular docking simulations, which further supported the inhibition of DE differentiation by p-FAK overexpression in SAR-treated cells. In addition, we found that SAR inhibited the nuclear translocation of Yes-associated protein (YAP), a downstream effector of FAK, which promoted DE differentiation. Moreover, the addition of SAR enabled a significant reduction in activin A (AA) from 50 to 10 ng/mL without compromising DE differentiation efficiency. For induction of the pancreatic lineage, 10 ng/ml AA combined with SAR at the DE differentiation stage yielded a comparative number of PDX1+/NKX6.1+ pancreatic progenitor cells to those obtained by 50 ng/ml AA treatment. Our study highlights SAR as a potential modulator that facilitates the cost-effective generation of DE cells and provides insight into the orchestration of cell fate determination.


Assuntos
Benzodioxóis , Diferenciação Celular , Endoderma , Quinazolinas , Transdução de Sinais , Humanos , Diferenciação Celular/efeitos dos fármacos , Endoderma/efeitos dos fármacos , Endoderma/citologia , Endoderma/metabolismo , Benzodioxóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Quinazolinas/farmacologia , Fatores de Transcrição/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Sinalização YAP/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Ativinas/metabolismo , Simulação de Acoplamento Molecular
2.
Transl Res ; 270: 94-103, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38643868

RESUMO

Mitochondrial dysfunction is recognized as a pivotal contributor to the pathogenesis of renal ischemia-reperfusion (IR) injury. Mitophagy, the process responsible for removing damaged protein aggregates, stands as a critical mechanism safeguarding cells against IR injury. Currently, the role of deubiquitination in regulating mitophagy still needs to be completely elucidated. This study aimed to evaluate the impact of ubiquitin-specific peptidase 14 (Usp14), a deubiquitinase, in IR injury by influencing mitophagy. Utilizing a murine model of renal IR injury, Usp14 silencing was found to ameliorate kidney injury, leading to decreased levels of serum creatinine and blood urea nitrogen, alongside diminished oxidative stress and inflammation. In renal epithelial cells subjected to hypoxia/reoxygenation (H/R), Usp14 knockdown increased cell viability and reduced apoptosis. Further mechanistic studies revealed that Usp14 interacted with and deubiquitinated transcription factor AP-2 alpha (Tfap2a), thereby suppressing its downstream target gene, TANK binding kinase 1 (Tbk1), to influence mitophagy. Tfap2a overexpression or Tbk1 inhibition reversed the protective effects of Usp14 silencing on renal tubular cell injury and its facilitation of mitophagy. In summary, our study demonstrated the renoprotective role of Usp14 knockdown in mitigating renal IR injury by promoting Tfap2a-mediated Tbk1 upregulation and mitophagy. These findings advocate for exploring Usp14 inhibition as a promising therapeutic avenue for mitigating IR injury, primarily by enhancing the clearance of damaged mitochondria through augmented mitophagy.

3.
Genomics ; 116(2): 110778, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38163575

RESUMO

Ischemia-reperfusion injury (IRI) is an inevitable pathophysiological phenomenon in kidney transplantation. Necroptosis is an undoubtedly important contributing mechanism in renal IRI. We first screened differentially expressed necroptosis-related genes (DENRGs) from public databases. Eight DENRGs were validated by independent datasets and verified by qRT-PCR in a rat IRI model. We used univariate and multivariate Cox regression analyses to establish a prognostic signature, and graft survival analysis was performed. Immune infiltrating landscape analysis and gene set enrichment analysis (GSEA) were performed to understand the underlying mechanisms of graft loss, which suggested that necroptosis may aggravate the immune response, resulting in graft loss. Subsequently, a delayed graft function (DGF) diagnostic signature was constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) and exhibited robust efficacy in validation datasets. After comprehensively analyzing DENRGs during IRI, we successfully constructed a prognostic signature and DGF predictive signature, which may provide clinical insights for kidney transplant.


Assuntos
Transplante de Rim , Ratos , Animais , Transplante de Rim/efeitos adversos , Função Retardada do Enxerto/diagnóstico , Função Retardada do Enxerto/genética , Necroptose , Rim , Sobrevivência de Enxerto/fisiologia
4.
Molecules ; 26(21)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34771149

RESUMO

Tissue microenvironments are rich in signaling molecules. However, factors in the tissue matrix that can serve as tissue-specific cues for engineering pancreatic tissues have not been thoroughly identified. In this study, we performed a comprehensive proteomic analysis of porcine decellularized pancreatic extracellular matrix (dpECM). By profiling dpECM collected from subjects of different ages and genders, we showed that the detergent-free decellularization method developed in this study permits the preservation of approximately 62.4% more proteins than a detergent-based method. In addition, we demonstrated that dpECM prepared from young pigs contained approximately 68.5% more extracellular matrix proteins than those prepared from adult pigs. Furthermore, we categorized dpECM proteins by biological process, molecular function, and cellular component through gene ontology analysis. Our study results also suggested that the protein composition of dpECM is significantly different between male and female animals while a KEGG enrichment pathway analysis revealed that dpECM protein profiling varies significantly depending on age. This study provides the proteome of pancreatic decellularized ECM in different animal ages and genders, which will help identify the bioactive molecules that are pivotal in creating tissue-specific cues for engineering tissues in vitro.


Assuntos
Biologia Computacional , Matriz Extracelular/química , Pâncreas/química , Proteínas/análise , Proteômica , Animais , Suínos , Engenharia Tecidual
5.
Sci Rep ; 11(1): 13558, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193893

RESUMO

In vitro differentiation of human induced pluripotent stem cells (iPSCs) into functional islets holds immense potential to create an unlimited source of islets for diabetes research and treatment. A continuous challenge in this field is to generate glucose-responsive mature islets. We herein report a previously undiscovered angiopoietin signal for in vitro islet development. We revealed, for the first time, that angiopoietins, including angiopoietin-1 (Ang1) and angiopoietin-2 (Ang2) permit the generation of islets from iPSCs with elevated glucose responsiveness, a hallmark of mature islets. Angiopoietin-stimulated islets exhibited glucose synchronized calcium ion influx in repetitive glucose challenges. Moreover, Ang2 augmented the expression of all islet hormones, including insulin, glucagon, somatostatin, and pancreatic polypeptide; and ß cell transcription factors, including NKX6.1, MAFA, UCN3, and PDX1. Furthermore, we showed that the Ang2 stimulated islets were able to regulate insulin exocytosis through actin-filament polymerization and depolymerization upon glucose challenge, presumably through the CDC42-RAC1-gelsolin mediated insulin secretion signaling pathway. We also discovered the formation of endothelium within the islets under Ang2 stimulation. These results strongly suggest that angiopoietin acts as a signaling molecule to endorse in vitro islet development from iPSCs.


Assuntos
Angiopoietina-1/farmacologia , Angiopoietina-2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ilhotas Pancreáticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos
6.
ACS Biomater Sci Eng ; 6(7): 4155-4165, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463310

RESUMO

Regenerating human islet organoids from stem cells remains a significant challenge because of our limited knowledge on cues essential for developing the endocrine organoids in vitro. In this study, we discovered that a natural material prepared from a decellularized rat pancreatic extracellular matrix (dpECM) induces the self-assembly of human islet organoids during induced pluripotent stem cell (iPSC) pancreatic differentiation. For the first time, we demonstrated that the iPSC-derived islet organoids formed in the presence of the dpECM are capable of glucose-responsive secretion of both insulin and glucagon, two major hormones that maintain blood glucose homeostasis. The characterization of the organoids revealed that the organoids consisted of all major endocrine cell types, including α, ß, δ, and pancreatic polypeptide cells, that were assembled into a tissue architecture similar to that of human islets. The exposure of iPSCs to the dpECM during differentiation resulted in considerably elevated expression of key pancreatic transcription factors such as PDX-1, MAFA, and NKX6.1 and the production of all major hormones, including insulin, glucagon, somatostatin, and pancreatic polypeptide from stem cell-derived organoids. This study highlights the importance of natural, bioactive biomaterials for building microenvironments crucial to regenerating islet organoids from stem cells.


Assuntos
Ilhotas Pancreáticas , Células-Tronco Pluripotentes , Diferenciação Celular , Insulina , Organoides
7.
Biomaterials ; 233: 119673, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31866049

RESUMO

In pancreatic tissue engineering, generating human pancreatic islet organoids from stem cells has been challenging due mainly to a poor understanding of niches required for multicellular tissue self-assembly in vitro. In this study, we aimed to identify bioactive, chemically defined niches from natural, biological materials for islet development in vitro. We investigated the proteomics of decellularized rat pancreatic extracellular matrix (dpECM) hydrogel using advanced bioinformatics analysis, and identified that type V collagen (ColV) is constantly and abundantly present in dpECM hydrogel. Niches provided to human pluripotent stem cells (iPSCs) by presenting ColV in matrix coating substrates permitted stem cells progression into islet-like organoids that consist of all major pancreatic endocrine cell types, i.e. α, ß, δ, and pancreatic polypeptide cells. In the presence of ColV niches, gene expressions of all key pancreatic transcription factors and major hormone genes significantly increased in iPSC-derived organoids. Most importantly, ColV-containing microenvironment resulted in enhanced glucose responsive secretions of both insulin and glucagon hormone from organoids. The study demonstrates that ColV is a critical regulator that augments islet self-assembly from iPSCs, and it is feasible to utilize natural biomaterials to build tissue cues essential for multicellular tissue production in vitro.


Assuntos
Células-Tronco Pluripotentes , Proteômica , Animais , Diferenciação Celular , Colágeno , Humanos , Organogênese , Ratos
8.
Sci Rep ; 9(1): 20057, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882679

RESUMO

Tumors can escape from the immune system by overexpressing CD47 and other checkpoint blockades. CD47 is expressed ubiquitously by all cells in the body, posing an obstacle for CD47 blocking treatments due to their systemic toxicity. We performed a study to determine how the tumor microenvironment changes after vaccination with genome edited CD47-/- syngeneic tumor cells. We discovered that inactivated CD47-depleted mouse melanoma cells can protect mice from melanoma. Our animal study indicated that 33% of vaccinated mice remained tumor-free, and 100% of mice had 5-fold reduced growth rates. The characterization of immunomodulatory effects of the vaccine revealed a highly anti-tumorigenic and homogenous microenvironment after vaccination. We observed consistently that in the tumors that failed to respond to vaccines, there were reduced natural killer cells, elevated regulatory T cells, M2-type macrophages, and high PD-L1 expression in these cells. These observations suggested that the tumor microenvironments became more suppressive to tumor growth after vaccination, suggesting a potential new immunotherapy for solid tumors.


Assuntos
Antígeno CD47/genética , Edição de Genes , Imunoterapia/métodos , Microambiente Tumoral , Animais , Vacinas Anticâncer/administração & dosagem , Linhagem Celular Tumoral , Camundongos , Camundongos Knockout , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia
9.
Int J Mol Sci ; 19(11)2018 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-30400347

RESUMO

We have previously reported that a porous membrane of polyethylene terephthalate (PET) enables significant augmentation of human pluripotent stem cell (hPSC) proliferation and differentiation. The interaction between hPSCs and the PET surface induces ß-catenin-mediated wingless/integrated (Wnt) signaling, leading to upregulation of the expression of adhesion molecules in hPSCs. In this study, we sought to unveil mechanisms underlying the role of the PET membrane in hPSC self-renewal and metabolism. We discovered that physicochemical cues of the PET membrane considerably alter hPSC metabolism by increasing the cell yield and suppressing the generation of toxic byproduct, indicating an effective cell self-renewal and a less apoptotic culture environment in the membrane culture system. Furthermore, we discovered that a caspase-8 medicated apoptotic pathway plays a profound role in obstructing hPSCs grown on a traditional tissue culture plate (TCP). Treating hPSCs seeded on a TCP surface with a caspase-8 inhibitor significantly suppressed cellular apoptotic pathway and improved cell proliferation and metabolism. Our experimental results provided valuable insights into signal pathways influencing hPSC self-renewal during routine maintenance and expansion, which would shed light on large-scale preparation of hPSCs for clinical applications.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células-Tronco Embrionárias Humanas/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Polietilenotereftalatos/farmacologia , Fenômenos Biomecânicos , Caspase 8/genética , Caspase 8/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica , Glucose/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Ácido Láctico/metabolismo , Membranas Artificiais , Oligopeptídeos/farmacologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Porosidade , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo
10.
J Tissue Eng Regen Med ; 11(10): 2685-2698, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27430962

RESUMO

In cell-based therapies for liver injuries, the clinical outcomes are closely related to the surrounding microenvironment of the transplanted bone marrow mesenchymal stem cells (BM-MSCs). However, whether liver-specific ECM (L-ECM), as one of major microenvironment signals, could regulate the therapeutic effect of BM-MSCs through changing their biological characteristics is unclear. This study aimed to investigate the hepatogenicity and underlying mechanism of L-ECM as well as its potential regulative role in the MSC-based liver recovery. L-ECM was prepared by homogenization of decellularized whole porcine liver. After three-dimensional culture with or without the presence of L-ECM, BM-MSCs expressed hepatocyte-specific genes and proteins in an L-ECM concentration-dependent manner. Further analysis showed that L-ECM could activate specific types of integrins (ITGs) as well as their downstream signalling pathways. When the cell/ECM interaction was enhanced by incorporating BM-MSCs with Mn2+ , ITGs were activated and the hepatogenic capacity of L-ECM was improved. The regeneration of rat livers from either acute or chronic fibrosis could also be accelerated after transplantation of Mn2+ -treated BM-MSCs. L-ECM therefore promotes hepatic differentiation of BM-MSCs via the ITG pathway and plays a therapeutically beneficial role for stem cell-based liver regeneration. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Diferenciação Celular , Matriz Extracelular/metabolismo , Integrinas/metabolismo , Cirrose Hepática/patologia , Fígado/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Transdução de Sinais , Animais , Cátions Bivalentes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Manganês/farmacologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Sus scrofa
11.
Burns Trauma ; 1(2): 63-72, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-27574627

RESUMO

The development of cell biology, molecular biology, and material science, has been propelling biomimic tissue-engineered skins to become more sophisticated in scientificity and more simplified in practicality. In order to improve the safety, durability, elasticity, biocompatibility, and clinical efficacy of tissue-engineered skin, several powerful seed cells have already found their application in wound repair, and a variety of bioactive scaff olds have been discovered to influence cell fate in epidermogenesis. These exuberant interests provide insights into advanced construction strategies for complex skin mimics. Based on these exciting developments, a complete full-thickness tissue-engineered skin is likely to be generated.

12.
Chin Med J (Engl) ; 124(10): 1529-33, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21740811

RESUMO

BACKGROUND: Fenvalerate (FEN) has been demonstrated to be a reproductive toxicant in humans and rodents. However, little is known about whether short-term exposure to low-dose FEN produces reproductive toxicity. METHODS: We administered FEN (0.009 375, 0.1875, 3.750, or 45.00 mg×kg(-1)×d(-1) by gavage for 30 days) to male ICR mice and compared reproductive toxicity parameters between groups receiving different concentrations of FEN. Reproductive toxicity was evaluated by computer-assisted semen quality analysis (CASA), chlortetracycline (CTC) assay, and histopathology. RESULTS: The sperm morphology and testis histology of FEN-exposed mice (all doses) were similar to that in controlling mice. Exposure to FEN at a concentration of 0.1875 mg×kg(-1)×d(-1) decreased sperm path straightness (STR) and linearity (LIN) (both P < 0.05), but had no significant impact on average path velocity (VAP), straight line velocity (VSL), curvilinear velocity (VCL), lateral amplitude (ALH), beat cross frequency (BCF), or progressive motility (MOT). FEN reduced the rate of mouse sperm capacitation in a dose-dependent manner. CONCLUSION: The present results demonstrate that exposure to low-dose FEN for 30 days reduces semen quality and sperm capacitation in adult mice.


Assuntos
Nitrilas/farmacologia , Piretrinas/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Tamanho do Órgão/efeitos dos fármacos , Sêmen/efeitos dos fármacos , Análise do Sêmen , Motilidade dos Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...