Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Med ; 21(4): e1004387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630802

RESUMO

BACKGROUND: Coronavirus Disease 2019 (COVID-19) continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Here, we present projections of COVID-19 hospitalizations and deaths in the United States for the next 2 years under 2 plausible assumptions about immune escape (20% per year and 50% per year) and 3 possible CDC recommendations for the use of annually reformulated vaccines (no recommendation, vaccination for those aged 65 years and over, vaccination for all eligible age groups based on FDA approval). METHODS AND FINDINGS: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023 and April 15, 2025 under 6 scenarios representing the intersection of considered levels of immune escape and vaccination. Annually reformulated vaccines are assumed to be 65% effective against symptomatic infection with strains circulating on June 15 of each year and to become available on September 1. Age- and state-specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. State and national projections from 8 modeling teams were ensembled to produce projections for each scenario and expected reductions in disease outcomes due to vaccination over the projection period. From April 15, 2023 to April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November to January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% projection interval (PI) [1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% confidence interval (CI) [104,000, 355,000]) fewer hospitalizations and 33,000 (95% CI [12,000, 54,000]) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI [29,000, 69,000]) fewer deaths. CONCLUSIONS: COVID-19 is projected to be a significant public health threat over the coming 2 years. Broad vaccination has the potential to substantially reduce the burden of this disease, saving tens of thousands of lives each year.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Hospitalização , SARS-CoV-2 , Vacinação , Humanos , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/epidemiologia , COVID-19/imunologia , Estados Unidos/epidemiologia , Idoso , Hospitalização/estatística & dados numéricos , SARS-CoV-2/imunologia , Pessoa de Meia-Idade , Adulto , Adolescente , Adulto Jovem , Criança , Idoso de 80 Anos ou mais , Masculino
2.
Epidemics ; 46: 100746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367285

RESUMO

Throughout the COVID-19 pandemic, changes in policy, shifts in behavior, and the emergence of new SARS-CoV-2 variants spurred multiple waves of transmission. Accurate assessments of the changing risks were vital for ensuring adequate healthcare capacity, designing mitigation strategies, and communicating effectively with the public. Here, we introduce a model of COVID-19 transmission and vaccination that provided rapid and reliable projections as the BA.1, BA.4 and BA.5 variants emerged and spread across the US. For example, our three-week ahead national projection of the early 2021 peak in COVID-19 hospitalizations was only one day later and 11.6-13.3% higher than the actual peak, while our projected peak in mortality was two days earlier and 0.22-4.7% higher than reported. We track population-level immunity from prior infections and vaccination in terms of the percent reduction in overall susceptibility relative to a completely naive population. As of October 1, 2022, we estimate that the US population had a 36.52% reduction in overall susceptibility to the BA.4/BA.5 variants, with 61.8%, 15.06%, and 23.54% of immunity attributable to infections, primary series vaccination, and booster vaccination, respectively. We retrospectively projected the potential impact of expanding booster coverage starting on July 15, 2022, and found that a five-fold increase in weekly boosting rates would have resulted in 70% of people over 65 vaccinated by Oct 10, 2022 and averted 25,000 (95% CI: 14,400-35,700) deaths during the BA.4/BA.5 surge. Our model provides coherent variables for tracking population-level immunity in the increasingly complex landscape of variants and vaccines and enables robust simulations of plausible scenarios for the emergence and mitigation of novel COVID variants.


Assuntos
COVID-19 , Pandemias , Humanos , Estudos Retrospectivos , COVID-19/epidemiologia , Hospitalização , Imunidade Coletiva
3.
medRxiv ; 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37961207

RESUMO

Importance: COVID-19 continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Objective: To project COVID-19 hospitalizations and deaths from April 2023-April 2025 under two plausible assumptions about immune escape (20% per year and 50% per year) and three possible CDC recommendations for the use of annually reformulated vaccines (no vaccine recommendation, vaccination for those aged 65+, vaccination for all eligible groups). Design: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023-April 15, 2025 under six scenarios representing the intersection of considered levels of immune escape and vaccination. State and national projections from eight modeling teams were ensembled to produce projections for each scenario. Setting: The entire United States. Participants: None. Exposure: Annually reformulated vaccines assumed to be 65% effective against strains circulating on June 15 of each year and to become available on September 1. Age and state specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. Main outcomes and measures: Ensemble estimates of weekly and cumulative COVID-19 hospitalizations and deaths. Expected relative and absolute reductions in hospitalizations and deaths due to vaccination over the projection period. Results: From April 15, 2023-April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November-January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% PI: 1,438,000-4,270,000) hospitalizations and 209,000 (90% PI: 139,000-461,000) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% CI: 104,000-355,000) fewer hospitalizations and 33,000 (95% CI: 12,000-54,000) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI: 29,000-69,000) fewer deaths. Conclusion and Relevance: COVID-19 is projected to be a significant public health threat over the coming two years. Broad vaccination has the potential to substantially reduce the burden of this disease.

4.
Epidemics ; 42: 100660, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36527867

RESUMO

We estimated the probability of undetected emergence of the SARS-CoV-2 Omicron variant in 25 low and middle-income countries (LMICs) prior to December 5, 2021. In nine countries, the risk exceeds 50 %; in Turkey, Pakistan and the Philippines, it exceeds 99 %. Risks are generally lower in the Americas than Europe or Asia.


Assuntos
COVID-19 , Humanos , Países em Desenvolvimento , SARS-CoV-2 , Europa (Continente)
5.
Biomed Res Int ; 2018: 9872095, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30105272

RESUMO

Visceral leishmaniasis (VL), one of the deadliest parasitic diseases in the world, causes more than 50,000 human deaths each year and afflicts millions of people throughout South America, East Africa, South Asia, and Mediterranean Region. In 2015 the World Health Organization classified VL as a neglected tropical disease (NTD), prompting concentrated study of the VL epidemic using mathematical and simulation models. This paper reviews literature related to prevalence and prevention control strategies. More than thirty current research works were reviewed and classified based on VL epidemic study methods, including modeling approaches, control strategies, and simulation techniques since 2013. A summarization of these technical methods, major findings, and contributions from existing works revealed that VL epidemic research efforts must improve in the areas of validating and verifying VL mathematical models with real-world epidemic data. In addition, more dynamic disease control strategies must be explored and advanced simulation techniques must be used to predict VL pandemics.


Assuntos
Leishmaniose Visceral , Humanos , Leishmaniose Visceral/epidemiologia , Leishmaniose Visceral/prevenção & controle , Leishmaniose Visceral/terapia , Doenças Negligenciadas , Pesquisa
6.
J Math Biol ; 73(6-7): 1525-1560, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27084184

RESUMO

Visceral leishmaniasis (VL), a vector-borne disease caused by protozoan flagellates of the genus Leishmania, is transmitted by sand flies. After malaria, VL is the second-largest parasitic killer, responsible for an estimated 500,000 infections and 51,000 deaths annually worldwide. Mathematical models proposed for VL have included the impact of dogs versus wild canids in disease dissemination and models developed to assist in control approaches. However, quantitative conditions that are required to control or eradicate VL transmission are not provided and there are no mathematical methods proposed to quantitatively calculate optimal control strategies for VL transmission. The research objective of this work was to model VL disease transmission system (specifically Zoonotic VL), perform bifurcation analysis to discuss control conditions, and calculate optimal control strategies. Three time-dependent control strategies involving dog populations, sand fly population, and humans are mainly discussed. Another strategy sometimes used in attempts to control zoonotic VL transmission, dog culling, is also evaluated in this paper.


Assuntos
Métodos Epidemiológicos , Leishmaniose Visceral/prevenção & controle , Leishmaniose Visceral/transmissão , Modelos Biológicos , Animais , Cães , Humanos , Psychodidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...