Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(23): e2301585, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271884

RESUMO

Ultraviolet (UV) communication is a cutting-edge technology in communication battlefields, and self-powered photodetectors as their optical receivers hold great potential. However, suboptimal charge utilization has largely limited the further performance enhancement of self-powered photodetectors for high-throughput communication application. Herein, a self-powered Ti3 C2 Tx -hybrid poly(3,4 ethylenedioxythiophene):poly-styrene sulfonate (PEDOT:PSS)/ZnO (TPZ) photodetector is designed, which aims to boost charge utilization for desirable applications. The device takes advantage of photothermal effect to intensify pyro-photoelectric effect as well as the increased conductivity of the PEDOT:PSS, which significantly facilitated charge separation, accelerated charge transport, and suppressed interface charge recombination. Consequently, the self-powered TPZ photodetector exhibits superior comprehensive performance with high responsivity of 12.3 mA W-1 and fast response time of 62.2 µs, together with outstanding reversible and stable cyclic operation. Furthermore, the TPZ photodetector has been successfully applied in an integrated UV communication system as the self-powered optical receiver capable of real-time high-throughput information transmission with ASCII code under 9600 baud rate. This work provides the design insight of highly performing self-powered photodetectors to achieve high-efficiency optical communication in the future.

2.
iScience ; 26(1): 105880, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36686392

RESUMO

Exchanges of mRNA were shown between host and stem parasites but not root parasites. Cistanche deserticola (Orobanchaceae) is a holoparasitic herb which parasitizes on the roots of woody plant Haloxylon ammodendron (Chenopodiaceae). We used transcriptome sequencing and bioinformatic analyses to identify nearly ten thousand mobile mRNAs. Transcript abundance appears to be a driving force for transfer event and mRNA exchanges occur through haustorial junction. Mobility of selected mRNAs was confirmed in situ and in sunflower-Orobanche cumana heterologous parasitic system. Four C. deserticola →H. ammodendron mobile mRNAs appear to facilitate haustorium development. Of interest, two mobile mRNAs of putative resistance genes CdNLR1 and CdNLR2 cause root-specific hypersensitive response and retard parasite development, which might contribute to parasitic equilibrium. The present study provides evidence for the large-scale mRNA transfer event between a woody host and a root parasite, and demonstrates the functional relevance of six C. deserticola genes in host-parasite interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...