Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 80: 25-32, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689258

RESUMO

Optically pure D-amino acids are key chemicals with various applications. Although the production of specific D-amino acids has been achieved by chemical synthesis or with in vitro enzyme catalysts, it is challenging to convert a simple carbon source into D-amino acids with high efficiency. Here, we design an artificial metabolic pathway by engineering bacteria to heterologously express racemase and N-acetyltransferase to produce N-acetyl-D-amino acids from L-amino acids. This new platform allows the cytotoxicity of D-amino acids to be avoided. The universal potential of this acetylation protection strategy for effectively synthesizing optically pure D-amino acids is demonstrated by testing sixteen amino acid targets. Furthermore, we combine pathway optimization and metabolic engineering in Escherichia coli and achieve practically useful efficiency with four specific examples, including N-acetyl-D-valine, N-acetyl-D-serine, N-acetyl-D-phenylalanine and N-acetyl-D-phenylglycine, with titers reaching 5.65 g/L, 5.25 g/L, 8.025 g/L and 130 mg/L, respectively. This work opens up opportunities for synthesizing D-amino acids directly from simple carbon sources, avoiding costly and unsustainable conventional approaches.


Assuntos
Aminoácidos , Escherichia coli , Aminoácidos/genética , Acetilação , Escherichia coli/metabolismo , Fenilalanina , Engenharia Metabólica , Carbono/metabolismo
2.
Front Bioeng Biotechnol ; 9: 738052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869256

RESUMO

High DHA production cost caused by low DHA titer and productivity of the current Schizochytrium strains is a bottleneck for its application in competition with traditional fish-oil based approach. In this study, atmospheric and room-temperature plasma with iodoacetic acid and dehydroepiandrosterone screening led to three mutants, 6-8, 6-16 and 6-23 all with increased growth and DHA accumulations. A LC/MS metabolomic analysis revealed the increased metabolism in PPP and EMP as well as the decreased TCA cycle might be relevant to the increased growth and DHA biosynthesis in the mutants. Finally, the mutant 6-23, which achieved the highest growth and DHA accumulation among all mutants, was evaluated in a 5 L fermentor. The results showed that the DHA concentration and productivity in mutant 6-23 were 41.4 g/L and 430.7 mg/L/h in fermentation for 96 h, respectively, which is the highest reported so far in literature. The study provides a novel strain improvement strategy for DHA-producing Schizochytrium.

3.
Front Microbiol ; 9: 863, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780373

RESUMO

Microbial small RNAs (sRNAs) play essential roles against many stress conditions in cyanobacteria. However, little is known on their regulatory mechanisms on biofuels tolerance. In our previous sRNA analysis, a trans-encoded sRNA Nc117 was found involved in the tolerance to ethanol and 1-butanol in Synechocystis sp. PCC 6803. However, its functional mechanism is yet to be determined. In this study, functional characterization of sRNA Nc117 was performed. Briefly, the exact length of the trans-encoded sRNA Nc117 was determined to be 102 nucleotides using 3' RACE, and the positive regulation of Nc117 on short chain alcohols tolerance was further confirmed. Then, computational target prediction and transcriptomic analysis were integrated to explore the potential targets of Nc117. A total of 119 up-regulated and 116 down-regulated genes were identified in nc117 overexpression strain compared with the wild type by comparative transcriptomic analysis, among which the upstream regions of five genes were overlapped with those predicted by computational target approach. Based on the phenotype analysis of gene deletion and overexpression strains under short chain alcohols stress, one gene slr0007 encoding D-glycero-alpha-D-manno-heptose 1-phosphate guanylyltransferase was determined as a potential target of Nc117, suggesting that the synthesis of LPS or S-layer glycoprotein may be responsible for the tolerance enhancement. As the first reported trans-encoded sRNA positively regulating biofuels tolerance in cyanobacteria, this study not only provided evidence for a new regulatory mechanism of trans-encoded sRNA in cyanobacteria, but also valuable information for rational construction of high-tolerant cyanobacterial chassis.

4.
Bioresour Technol ; 260: 124-129, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29625283

RESUMO

Schizochytrium sp. is a promising candidate for docosahexaenoic acid (DHA) production due to its high content of lipid and DHA proportions. To further enhance the lipid accumulation, seven chemical modulators were screened to evaluate their roles on lipid accumulation. Notably, among the seven tested chemical modulators, the addition of naphthoxyacetic acid (BNOA) or jasmonic acid (JA) was able to increase the lipid accumulation of Schizochytrium sp. S31. In addition, the effects of BNOA and JA were demonstrated dose-dependent and time-dependent, achieving a highest increase in lipid content by 11.16% and 12.71% when 2.0 mg/L of BNOA or 20 mg/L of JA was added into culture at 48 h after inoculation, respectively. In addition, the combination of 2 mg/L BNOA and 20 mg/L JA further increased lipid accumulation up to 16.79%. These results provided valuable strategy on promoting the lipid accumulation and DHA production by chemical modulators in Schizochytrium sp. S31.


Assuntos
Ácidos Docosa-Hexaenoicos , Estramenópilas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...