Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 342: 122402, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048237

RESUMO

Glycosylation is the most prominent modification important for vaccines and its specific pattern depends on several factors that need to be considered when developing a new biopharmaceutical. Tailor-made glycosylation can be exploited to develop more effective and safer vaccines; for this reason, a deep understanding of both glycoengineering strategies and glycans structures and functions is required. In this review we discuss the recent advances concerning glycoprotein expression systems and the explanation of glycans immunomodulation mechanisms. Furthermore, we highlight how glycans tune the immunological properties among different vaccines platforms (whole virus, recombinant protein, nucleic acid), also comparing commercially available formulations and describing the state-of-the-art analytical technologies for glycosylation analysis. The whole review stresses the aspect of glycoprotein glycans as a potential tool to overcome nowadays medical needs in vaccine field.


Assuntos
Glicoproteínas , Polissacarídeos , Vacinas Virais , Glicosilação , Humanos , Polissacarídeos/química , Vacinas Virais/química , Vacinas Virais/imunologia , Glicoproteínas/química , Glicoproteínas/imunologia , Animais
2.
ACS Pharmacol Transl Sci ; 7(5): 1584-1594, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38751636

RESUMO

Outer membrane vesicles (OMVs) have been widely explored to develop vaccine candidates for bacterial pathogens due to their ability to combine adjuvant properties with immunogenic activity. OMV expresses a variety of proteins and carbohydrate antigens on their surfaces. For this reason, there is an analytical need to thoroughly characterize the species expressed at their surface: we here present a simple and accurate reversed-phase ultrahigh-performance liquid chromatography (RP-UPLC) method developed according to quality by design principles. This work provides an analytical alternative to the classical sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) characterization. The higher selectivity and sensitivity of the RP-UHPLC assay allow for the identification of additional protein species with respect to SDS-PAGE and facilitate its precise relative abundance quantification. According to validation results, the assay showed high accuracy, linearity, precision, repeatability, and a limit of quantification of 1% for less abundant proteins. This performance paves the way for improved production campaign consistency while also being analytically simple (no sample pretreatment required), making it suitable for routine quality control testing. In addition, the applicability of the assay to a wider range of vesicle classes (GMMA) was demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA