Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(22): e202403898, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497553

RESUMO

Addressing the dual enhancement of circular polarization (glum) and luminescence quantum yield (QY) in circularly polarized luminescence (CPL) systems poses a significant challenge. In this study, we present an innovative strategy utilizing the entropically driven self-assembly of amphiphilic phosphorescent platinum(II) complexes (L-Pt) with tetraethylene glycol chains, resulting in unique temperature dependencies. The entropically driven self-assembly of L-Pt leads to a synergistic improvement in phosphorescence emission efficiency (QY was amplified from 15 % at 25 °C to 53 % at 60 °C) and chirality, both in the ground state and the excited state (glum value has been magnified from 0.04×10-2 to 0.06) with increasing temperature. Notably, we observed reversible modulation of phosphorescence and chirality observed over at least 10 cycles through successive heating and cooling, highlighting the intelligent control of luminescence and chiroptical properties by regulating intermolecular interactions among neighboring L-Pt molecules. Importantly, the QY and glum of the L-Pt assembly in solid state were measured as 69 % and 0.16 respectively, representing relatively high values compared to most self-assembled CPL systems. This study marks the pioneering demonstration of dual thermo-enhancement of phosphorescence and CPL and provides valuable insights into the thermal effects on high-temperature and switchable CPL materials.

2.
J Phys Chem B ; 128(10): 2447-2456, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38417258

RESUMO

Formamide (FA) exhibits complete miscibility with water, offering a simplified model for exploring the solvation dynamics of peptide linkages in biophysical processes. Its liquid state demonstrates a three-dimensional hydrogen bonding network akin to water, reflecting solvent-like behavior. Analyzing the microscopic structure and dynamics of FA-water mixtures is expected to provide crucial insights into hydrogen bonding dynamics─a key aspect of various biophysical phenomena. This study is focused on the dynamics of FA-water mixtures using linear and femtosecond infrared spectroscopies. By using the intrinsic OD stretch and extrinsic probe SCN-, the local vibrational behaviors across various FA-water compositions were systematically investigated. The vibrational relaxation of OD stretch revealed a negligible impact of FA addition on the vibrational lifetime of water molecules, underscoring the mixture's water-like behavior. However, the reorientational dynamics of OD stretch slowed with increasing FA mole fraction (XFA), plateauing beyond XFA > 0.5. This suggests a correlation between OD's reorientational time and the strength of the hydrogen bond network, likely tied to the solution's changing dielectric constant. Conversely, the vibrational relaxation dynamics of SCN- was strongly correlated with XFA, highlighting a competition between water and FA molecules in solvating SCN-. Moreover, a linear relationship between rising viscosity and the prolonged correlation time of SCN-'s slow dynamics indicates that the solution's macroscopic viscosity is dictated by the extended structures formed between FA and water molecules. The relation between the reorientation dynamics of the SCN- and the macroscopic viscosity in aqueous FA-water mixture solutions was analyzed by using the Stokes-Einstein-Debye equations. The direct viscosity-diffusion coupling is observed, which can be attributed to the homogeneous dynamics feature in FA-water mixture solutions. The inclusion of these intrinsic and extrinsic probes not only enhances the comprehensiveness of our analysis but also provides valuable insights into various aspects of the dynamics within the FA-water system. This investigation sheds light on the fundamental dynamics of FA-water mixtures, emphasizing their molecular-level homogeneity in this binary mixture solution.

3.
J Phys Chem Lett ; 14(49): 11183-11189, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38055627

RESUMO

Anion recognition through noncovalent interactions stands as an emerging field in supramolecular chemistry, exerting a profound influence on the regulation of biological functions. Herein, the thermodynamics of complexation between sodium cyanate (NaOCN) and calix[4]pyrrole was systematically investigated by linear and nonlinear IR spectroscopy, highlighting enthalpy changes as the dominant driving force. The overall orientational relaxation of bound anion can be described by an Arrhenius-type activated process, yielding an activation energy of 15.0 ± 1.0 kJ mol-1. The structural dynamics of contact ion pairs (CIPs) formed between Na+ and OCN- in solution showed a negligible temperature effect, suggesting entropy changes as the principal governing factor. Further analysis revealed that anion recognition in solution is mediated by conformational changes of the receptor and collective rearrangement of hydrogen bond dynamics. This study, framed within the paradigms of thermodynamics and ultrafast structural dynamics, substantially advances our comprehension of the microscopic mechanisms underlying anion recognition in the realm of supramolecular chemistry.

4.
J Phys Chem Lett ; 14(31): 6968-6976, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37506173

RESUMO

Highly concentrated aqueous electrolytes have attracted attention due to their unique applications in lithium ion batteries (LIBs). However, the solvation structure and transport mechanism of Li+ cations at concentrated concentrations remain largely unexplored. To address this gap in knowledge, we employ ultrafast infrared spectroscopy and molecular dynamics (MD) simulations to reveal the dynamic and spatial structural heterogeneity in aqueous lithium chloride (LiCl) solutions. The coupling between the reorientation dynamics of the extrinsic probe and the macroscopic viscosity in aqueous LiCl solutions was analyzed using the Stokes-Einstein-Debye (SED) equations. MD simulations reveal that the Cl- and Li+ form chain-like structures through electrostatic interactions, supporting the vehicular migration of Li+ through the chain-like structure. The concentration dependent conductivity of the LiCl solution is well reproduced, where Li(H2O)2+ and Li(H2O)3+ are the dominant species that contribute to the conduction of Li+. This study is expected to establish correlations between ion pair structures and macroscopic properties.

5.
J Phys Chem B ; 127(9): 2044-2051, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36847652

RESUMO

Three 2,6-electron donor-substituted boron dipyrromethene (BODIPY) exhibiting an intramolecular charge transfer (ICT) character with large Stokes shift and moderate fluorescence quantum yields were designed and synthesized. Broadband femtosecond transient absorption (fs-TA) spectroscopy measurements were performed to directly detect the CT state in nonpolar or less polar solvents and the charge separation (CS) state in more polar solvents. A solid foundation for the fs-TA assignment can be found in electrolysis experiments. In addition, the ICT character of the newly designed compounds was investigated by density functional theory (DFT) calculations. Meanwhile, the reference compounds without the donor groups were synthesized, and their photophysical behaviors and ultrafast time-resolved spectra confirmed that no ICT process occurred regardless of the nature of the solvent. This work emphasizes the importance of decorating the BODIPY core with electron-donating substituents at 2,6-positions to efficiently adjust its photofunctional behaviors demonstrating the ICT character. Importantly, the photophysical processes could be easily regulated by changing the solvent with different polarities.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36753052

RESUMO

Pure-bromide quasi-2D perovskite (PBQ-2DP) promises high-performance light-emitting diodes (LEDs), while a challenge remains on control over its n-phase distribution for bright true-blue emission. Present work addresses the challenge through exploring the passivation molecule of amino acid with reinforced binding energy, which generates narrow n-phase distribution preferentially at n = 3 with true blue emission at 478 nm. Consequently, a peak external quantum efficiency of 5.52% and a record brightness of 512 cd m-2 are achieved on the PBQ-2DP-based true blue PeLED, these both values located among the top in the records of similar devices. We further reveal that the electron-phonon coupling results in the red-shifted emission in the PBQ-2DP film, suggesting that the view of n-phase distribution dominated true-blue emission in PBQ-2DP needs to be revisited, pointing out a guideline of electron-phonon coupling suppression to relieve the strait of realizing true blue or even deep blue emission in the PBQ-2DP film.

7.
J Phys Chem Lett ; 13(50): 11811-11817, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36519945

RESUMO

Iron(III) porphyrin complexes have been demonstrated as one of the efficient molecular catalysts for the electrochemical reduction of CO2. However, the role of axial ligands coordinated with a metal center in the complex on the electrochemical CO2 reduction activity has not been fully explored yet. Herein, iron(III) tetraphenylporphyrin thiocyanate (FeTPP-SCN) is synthesized from a commercially available catalyst of FeTPP-Cl by a counteranion exchanging reaction. Cyclic voltammetry measurements showed that the catalytic activity of FeTPP-SCN is noticeably suppressed in the DMF solutions. The structural dynamics of the axial ligand in FeTPP-SCN are further examined by the FTIR and ultrafast IR spectroscopies, where the SCN ligand is employed as the local vibrational probe. Vibrational relaxation measurements showed that the reorientational dynamics of SCN ligands was strongly restricted in DMF solution, suggesting that the subtle electrostatic interaction between the ligands and metal center in the complex can have a non-negligible effect on its catalytic activity.

8.
J Phys Chem B ; 126(46): 9663-9672, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36351006

RESUMO

The hydrogen bonding interaction between the amide functional group and water is fundamental to understanding the liquid-liquid heterogeneity in biological systems. Herein, the structure and dynamics of the N,N-dimethylformamide (DMF)-water mixtures have been investigated by linear and nonlinear IR spectroscopies, using the hydroxyl stretch and extrinsic probe of thiocyanate as local vibrational reporters. According to vibrational relaxation dynamics measurements, the orientational dynamics of water is not directly tied to those of DMF molecules. Wobbling-in-a-cone analysis demonstrates that the water molecules have varying degrees of angular restriction depending on their composition due to the formation of specific water-DMF networks. Because of the preferential solvation by DMF molecules, the rotational dynamics of the extrinsic probe is slowed significantly, and its rotational time constants are correlated to the change of solution viscosity. The unique structural dynamics observed in the DMF-water mixtures is expected to provide important insights into the underlying mechanism of microscopic heterogeneity in binary mixtures.


Assuntos
Dimetilformamida , Água , Ligação de Hidrogênio , Dimetilformamida/química , Água/química , Vibração , Viscosidade
9.
Biointerphases ; 17(5): 051201, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36070973

RESUMO

Sum frequency generation vibrational spectroscopy (SFG-VS) is an intrinsically surface-selective vibrational spectroscopic technique based on the second-order nonlinear optical process. Since its birth in the 1980s, SFG-VS has been used to solve interfacial structure and dynamics in a variety of research fields including chemistry, physics, materials sciences, biological sciences, environmental sciences, etc. Better understanding of SFG-VS instrumentation is no doubt an essential step to master this sophisticated technique. To address this need, here we will present a Tutorial with respect to the classification, setup layout, construction, operation, and data processing about SFG-VS. We will focus on the steady state Ti:sapphire based broad bandwidth SFG-VS system and use it as an example. We hope this Tutorial is beneficial for newcomers to the SFG-VS field and for people who are interested in using SFG-VS technique in their research.


Assuntos
Óxido de Alumínio , Titânio , Humanos , Análise Espectral/métodos , Vibração
10.
J Phys Chem Lett ; 13(14): 3158-3164, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35362990

RESUMO

ZnSe semiconductor nanocrystals (NCs) with a size comparable to their Bohr radius are synthesized, and the native capping agents with long hydrocarbon tails are replaced with short thiocyanate (SCN) ligands through a ligand exchange method. The structural dynamics of SCN ligands on the surface of ZnSe NCs in solution is investigated by ultrafast infrared spectroscopy. Vibrational population relaxation of SCN ligands is accelerated due to the specific interaction with the positively charged sites on the surface of NCs. The orientational anisotropy of the bound SCN ligands decayed at a rate much faster than that in the control solution containing Zn2+ cations. From the wobbling-in-the-cone model analysis, we found that the SCN ligand undergoes wobbling orientational diffusion with a relatively large cone semiangle on the surface of ZnSe NCs, and the overall orientational diffusion of bound SCN is found to be strongly dependent on the size of ZnSe NCs.

11.
ACS Appl Mater Interfaces ; 14(11): 13962-13969, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35275635

RESUMO

Fluorescent films have been widely recognized as one of the most powerful tools for trace analyte detection. However, their use has been limited due to the poor photochemical stability of fluorophores at a gas-solid interface and inefficient film mass transfer. Herein, novel fluorescent films were developed through self-assembly of amphiphilic BODIPY derivatives on micropatterned ionic liquid surfaces. Unlike solid-state films, the obtained monolayer films exhibit excellent photochemical stability, similar to that of a solution. Moreover, the interfacial assembly of amphiphilic fluorophores can avoid gas diffusion inside the microdroplets, significantly improving the sensing performance. The 1/1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) monolayer exhibits high sensitivity, high selectivity, and a fast response to detect diethylchlorophosphate (DCP) vapor. The detection limit was 226 ppt, with a response time to DCP of 2.0 s. Importantly, the 1/[BMIM]BF4 monolayer can be reused for at least 50 cycles with no obvious signal fading. This study is expected to benefit the development of new strategies for designing fluorescence sensing films and lay a solid foundation for the fabrication of multifunctional sensing devices with excellent photochemical stability and sensing performance.

12.
J Phys Chem Lett ; 13(2): 669-675, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35023744

RESUMO

The structure and anion recognition dynamics between calix[4]pyrroles and azide (N3-) anions in the form of its TBA+ and Na+ salts were investigated in dimethyl sulfoxide solutions by Fourier transform infrared (FTIR) spectroscopy and ultrafast IR spectroscopy. Vibrational energy redistribution of the N3- anion in the complex is accelerated through hydrogen bonding interactions with the N-H proton of the receptor. Rotational dynamics of the bound N3- is greatly restricted, demonstrating a distinct countercation effect. The detailed binding modes of N3- with the receptor were further evaluated by the density functional theoretical (DFT) calculations and nuclear magnetic resonance (NMR) spectroscopy. All of these measurements support the notion that the calix[4]pyrroles are capable of capturing the azide anion in solution. However, the calix[4]pyrroles may not necessarily undergo a conformational change to a cone-like geometry when they bind to the azide anion in the solution.

13.
Angew Chem Int Ed Engl ; 61(9): e202114310, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-34913230

RESUMO

Proton transfer is vital for many biological and chemical reactions. Hydrogen-bonded water-containing networks are often found in enzymes to assist proton transfer, but similar strategy has been rarely presented by synthetic catalysts. We herein report the Co corrole 1 with an appended crown ether unit and its boosted activity for the hydrogen evolution reaction (HER). Crystallographic and 1 H NMR studies proved that the crown ether of 1 can grab water via hydrogen bonds. By using protic acids as proton sources, the HER activity of 1 was largely boosted with added water, while the activity of crown-ether-free analogues showed very small enhancement. Inhibition studies by adding 1) external 18-crown-6-ether to extract water molecules and 2) potassium ion or N-benzyl-n-butylamine to block the crown ether of 1 further confirmed its critical role in assisting proton transfer via grabbed water molecules. This work presents a synthetic example to boost HER through water-containing networks.

14.
J Phys Chem B ; 125(46): 12797-12805, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34761933

RESUMO

It is usually believed that the binding affinity and selectivity of an alkali metal ion with crown ether are defined by the size matching model. However, the underlying mechanism of the specific host-guest interactions and the structural dynamics of the metal ions confined in the cavity of the crown ethers in the solutions are still not clear. In this report, a series of alkali thiocyanate salts (XSCN; X = Li, Na, K, and Cs) complexed with 18-crown-6 (a typical crown ether) in the chloroform solutions were studied by the polarization-selective infrared pump-probe spectroscopy and the ultrafast two-dimensional infrared (2D IR) spectroscopy. The SCN- counteranions were employed as the local vibrational probe to reveal the specific host-guest interactions in the crown ether complexes. The rotational dynamics and spectral diffusion of SCN- vibration were both measured by ultrafast IR spectroscopy, and it was found that the metal cations hosted by the crown ethers can have a pronounced effect on the rotational dynamics of the counteranions. The reorientational time constants of the SCN- vibration in the complexation follow the order Li+ > Na+ > K+ ≃ Cs+. More importantly, the spectral diffusion dynamics of SCN-, which quantifies the decay of the correlation of the frequency fluctuations in the complexation, was also affected by the metal ions but showed a different order of cationic effect. A detailed analysis of the 2D IR data showed that the spectral diffusion of SCN- counteranion clearly decayed with two different time scales in the complex of 18-crown-6 with K+. The 3-4-fold slowdown in spectral diffusion indicated that the fluctuation of SCN- vibrational transition frequency was strongly affected by the K+ cation due to the geometric constraint imposed by the crown ether. The results should help the researchers to unravel the specific host-guest interactions and further reveal the origination of the binding selectivity of crown ether for metal cations in the condensed phases from the perspective of structural dynamics.

15.
ACS Appl Mater Interfaces ; 13(47): 56476-56484, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34792326

RESUMO

Addressing the interactions between optical antennas and ensembles of emitters is particularly challenging. Charge transfer and Coulomb interactions complicate the understanding of the carrier dynamics coupled by antennas. Here, we show how Au antennas enhance the luminescence of CdSe/CdS quantum dot assemblies through carrier dynamics control within the framework of the local Kirchhoff law. The Au antennas inject hot electrons into quantum dot assemblies via plasmon-induced hot electron transfer that increases the carrier concentration. Also, the localized surface plasmon resonances of Au antennas favorably tilt the balance between nonradiative Auger processes and radiative recombination in the CdSe core. Eventually, a high bright (125,091.6 cd/m2) deep-red quantum dot light-emitting diode is obtained by combining with Au antennas. Our findings suggest a new understanding of light emission of assembled emitters coupled by antennas, which is of essential interest for the description of light-matter interaction in advanced optoelectronics.

16.
ACS Appl Mater Interfaces ; 13(37): 44760-44767, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34505502

RESUMO

The optical plasmonic cavity (OPC) including the metallic optical nanoantennas and a metal film exhibits extreme field enhancement for the increased spontaneous emission rate of emitters. The resonance wavelength of the OPC can be easily controlled by the volume of the OPC and the localized surface plasmonic resonances (LSPRs) of the nanoantennas, facilitating the effective coupling of OPC and the emitters. However, involving the OPC into the light emission-enhanced solution-processed devices is still a difficult challenge. The trade-off between the metallic structure of OPC and the solution procedures limits the performance enhancement of the electrical-driven devices. In this work, we construct a device-compatible OPC that allows the characterization of the carrier dynamics of quantum dot (QD) films in the real devices in-suit. The radiative recombination rate and relaxation rate of carriers in QDs are increased by the LSPR effect of the silver nanocubes for luminescence enhancement. The OPC further increases the spontaneous emission rate of QD films, achieving a Purcell factor of 166 and improving the electroluminescence of the OPC-based QD light-emitting diodes (QLEDs). The design of the OPC-involved QLEDs offers a solution for addressing the limitation of fabrication of OPC-combined solution-processed optoelectronic light sources.

17.
ACS Appl Mater Interfaces ; 13(19): 22457-22465, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33970593

RESUMO

We report a new sensing mechanism based on an indium-dihydroxyterephthalic acid metal-organic framework (MOF, SNNU-153), in which the spatially fitted analyte-MOF hydrogen-bond (H-bond) formation provides selective recognition while the analyte-H-bond assisted excited-state intramolecular proton transfer (ESIPT) and the resulting ratiometric emission act as a superior signal transducer with ultrafast response. The synergy of ESIPT signal transduction and confined MOF pore enables the SNNU-153 sensor selectively sensing hydrazine even among nitrogen-containing hydride analogs such as NH3, NH2OH, and (Me)2NNH2. The key of H-bond and associated ESIPT was further counter evidenced by an indium-2,5-dimethoxyterephthalic acid MOF (SNNU-152), where the hydroxyl protons were removed by methylation, showing near inertness to N2H4. The new molecular recognition concept thus makes SNNU-153 a powerful N2H4 sensor, which should be far-reaching to other sensing elements.

18.
ACS Appl Mater Interfaces ; 13(14): 16837-16845, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33783181

RESUMO

Artificial photofunctional systems with energy and electron transfer functions, inspired from photosynthesis in nature, have been developed for many promising applications including solar cell, biolabeling, photoelectric materials, and photodriven catalysis. Supramolecular hosts including macrocycles and cages have been explored for simulating photosynthesis based on a host-guest strategy. Herein, we report a host-guest approach by using a tetraphenylethene-based octacationic cage and fluorescent dyes to construct artificial photofunctional systems with energy and electron transfer functions. The cage traps various dyes within its hydrophobic cavity to form 1:1 host-guest complexes via CH-π, π-π, and/or electrostatic interactions in solution. The efficient energy transfer and ultrafast photoinduced electron transfer between the cage and dyes are competitive processes with each other in artificial photofunctional systems. Spectroscopic techniques that confirm energy transfer from the fluorescent cage to dyes (e.g., NiR, R700, and R800) are efficient, which induce the red shift of fluorescence. On the other hand, ultrafast photoinduced electron transfer from dyes (e.g., ICG, AG, and AV) to the fluorescent cage can induce fluorescence quenching. This study provides an insight into the construction of artificial photofunctional systems with energy and electron transfer functions via a host-guest approach in solution.

19.
J Phys Chem B ; 124(41): 9154-9162, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32965118

RESUMO

The specific host-guest interactions in the corresponding complexes of K+ and NH4+ with typical crown ethers were investigated by using FTIR and ultrafast IR spectroscopies. The counteranions, i.e., SCN-, were employed as a local vibrational probe to report the structural dynamics of the complexation. It was found that the vibrational relaxation dynamics of the SCN- was strongly affected by the cations confined in the cavities of the crown ethers. The time constant of the vibrational population decay of SCN- in the complex of NH4+ with the 18-crown-6 was determined to be 6 ± 2 ps, which is ∼30 times faster than that in the complex of K+ with the crown ethers. Control experiments showed that the vibrational population decay of SCN- depended on the size of the cavities of the crown ethers. A theoretical calculation further indicated that the nitrogen atom of SCN- showed preferential coordination to the K+ ions hosted by the crown ethers, while the NH4+ can form hydrogen bonds with the oxygen atoms in the studied crown ethers. The geometric constraints formed in the complex of crown ethers can cause a specific interaction between the NH4+ and SCN-, which can facilitate the intermolecular vibrational energy redistribution of the SCN-.

20.
ACS Appl Mater Interfaces ; 12(26): 29357-29364, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32501672

RESUMO

The development of active, durable, and nonprecious electrocatalysts for hydrogen electrochemistry is highly desirable but challenging. In this work, we design and fabricate a novel interface catalyst of Ni and Co2N (Ni/Co2N) for hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR). The Ni/Co2N interfacial catalysts not only achieve a current density of -10.0 mA cm-2 with an overpotential of 16.2 mV for HER but also provide a HOR current density of 2.35 mA cm-2 at 0.1 V vs reversible hydrogen electrode (RHE). Furthermore, the electrode couple made of the Ni/Co2N interfacial catalysts requires only a cell voltage of 1.57 V to gain a current density of 10 mA cm-2 for overall water splitting. Hybridizations in the three elements of Ni-3d, N-2p, and Co-3d result in charge transfer in the interfacial junction of the Ni and Co2N materials. Our density functional theory calculations show that both the interfacial N and Co sites of Ni/Co2N prefer to hydrogen adsorption in the hydrogen catalytic activities. This study provides a new approach for the construction of multifunctional catalysts for hydrogen electrochemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...