Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569482

RESUMO

To explore the temporal profile of retinal proteomes specific to primary and secondary retinal ganglion cell (RGC) loss. Unilateral partial optic nerve transection (pONT) was performed on the temporal side of the rat optic nerve. Temporal and nasal retinal samples were collected at 1, 4 and 8 weeks after pONT (n = 4 each) for non-biased profiling with a high-resolution hybrid quadrupole time-of-flight mass spectrometry running on label-free SWATHTM acquisition (SCIEX). An information-dependent acquisition ion library was generated using ProteinPilot 5.0 and OneOmics cloud bioinformatics. Combined proteome analysis detected 2531 proteins with a false discovery rate of <1%. Compared to the nasal retina, 10, 25 and 61 significantly regulated proteins were found in the temporal retina at 1, 4, and 8 weeks, respectively (p < 0.05, FC ≥ 1.4 or ≤0.7). Eight proteins (ALDH1A1, TRY10, GFAP, HBB-B1, ALB, CDC42, SNCG, NEFL) were differentially expressed for at least two time points. The expressions of ALDH1A1 and SNCG at nerve fibers were decreased along with axonal loss. Increased ALDH1A1 localization in the inner nuclear layer suggested stress response. Increased GFAP expression demonstrated regional reactivity of astrocytes and Muller cells. Meta-analysis of gene ontology showed a pronounced difference in endopeptidase and peptidase inhibitor activity. Temporal proteomic profiling demonstrates established and novel protein targets associated with RGC damage.

2.
Data Brief ; 36: 107120, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34095372

RESUMO

Water Gradient Contact Lens (WGCL) is a new generation material that combines the benefits of Silicone hydrogel (SiHy) and traditional hydrogel contact lenses by modifying the materials between the core and the surface. However, its impact on tear proteome has not been explored. Tears were collected on healthy young adults using Schirmer's strip at baseline, 1-week, and 1-month of WGCL lens wear (n=15) and age-matched untouched controls (n=10). Equal amounts of tears samples from individuals of WGCL and control groups were randomly pooled to form representative equal parts at each condition (n=3 for WGCL wear and age-matched untouched control group) at each condition (baseline, 1-week, and 1-month). Tears were prepared using the S-Trap sample preparation followed by the analysis of a TripleTOF 6600 mass spectrometer. Using Information-dependent acquisition (IDA), a total of 725 tear proteins (6760 distinct peptides) were identified in the constructed spectral library at 1% FDR. Using data-independent acquisition (SWATH-MS), data were analyzed and processed using PeakView (v2.2, SCIEX), with the top differentially expressed proteins at each time point (baseline, 1-week, and 1-month) presented. All acquired raw data (IDA and SWATH-MS) were submitted and published on the Peptide Atlas public repository (http://www.peptideatlas.org/) for general release (Data ID PASS01589).

3.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946922

RESUMO

Most of the previous myopic animal studies employed a single-candidate approach and lower resolution proteomics approaches that were difficult to detect minor changes, and generated limited systems-wide biological information. Hence, a complete picture of molecular events in the retina involving myopic development is lacking. Here, to investigate comprehensive retinal protein alternations and underlying molecular events in the early myopic stage, we performed a data-independent Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH) based proteomic analysis coupled with different bioinformatics tools in pigmented guinea pigs after 4-day lens-induced myopia (LIM). Myopic eyes compared to untreated contralateral control eyes caused significant changes in refractive error and choroid thickness (p < 0.05, n = 5). Relative elongation of axial length and the vitreous chamber depth were also observed. Using pooled samples from all individuals (n = 10) to build a species-specific retinal ion library for SWATH analysis, 3202 non-redundant proteins (with 24,616 peptides) were identified at 1% global FDR. For quantitative analysis, the 10 individual retinal samples (5 pairs) were analyzed using a high resolution Triple-TOF 6600 mass spectrometry (MS) with technical replicates. In total, 37 up-regulated and 21 down-regulated proteins were found significantly changed after LIM treatment (log2 ratio (T/C) > 0.26 or < -0.26; p ≤ 0.05). Data are accepted via ProteomeXchange with identifier PXD025003. Through Ingenuity Pathways Analysis (IPA), "lipid metabolism" was found as the top function associated with the differentially expressed proteins. Based on the protein abundance and peptide sequences, expression patterns of two regulated proteins (SLC6A6 and PTGES2) identified in this pathway were further successfully validated with high confidence (p < 0.05) using a novel Multiple Reaction Monitoring (MRM) assay on a QTRAP 6500+ MS. In summary, through an integrated discovery and targeted proteomic approach, this study serves as the first report to detect and confirm novel retinal protein changes and significant biological functions in the early LIM mammalian guinea pigs. The study provides new workflow and insights for further research to myopia control.


Assuntos
Proteínas do Olho/biossíntese , Miopia/metabolismo , Proteômica/métodos , Retina/metabolismo , Espectrometria de Massas em Tandem/métodos , Animais , Biologia Computacional , Conjuntos de Dados como Assunto , Modelos Animais de Doenças , Proteínas do Olho/genética , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Cobaias , Metabolismo dos Lipídeos , Redes e Vias Metabólicas/genética , Software
4.
Data Brief ; 33: 106526, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304948

RESUMO

Atropine, a non-selective muscarinic antagonist, is known to slow down myopia progression in human adolescents and in several animal models. However, its underlying molecular mechanism is unclear. The present work built a monocular form-deprivation myopia (FDM) guinea pig model, using facemasks as well as atropine treatment on FDM eyes for 2 and 4 weeks. Retinal protein changes in response to the FDM and effects of topical administration of atropine were screened for the two periods using fractionated isobaric tags for a relative and absolute quantification (iTRAQ) approach coupled with nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) (n=24, 48 eyes). Retinal tissues from another cohort receiving 4-weeks FDM with atropine treatment (n=12, 24 eyes) with more significant changes were subjected to sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics for further protein target confirmation. A total of 1695 proteins (8875 peptides) and 5961 proteins (51871 peptides) were identified using iTRAQ and SWATH approaches, respectively. Using the Paragon algorithm in the ProteinPilotTM software, the three most significantly up-regulated and down-regulated proteins that were commonly found in both ITRAQ and SWATH experiments are presented. All raw data generated from the work were submitted and published in the Peptide Atlas public repository (http://www.peptideatlas.org/) for general release (Data ID PASS01507).

5.
Data Brief ; 21: 1750-1755, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30505911

RESUMO

Myopia is generally regarded as a failure of normal emmetropization process, however, its underlying molecular mechanisms are unclear. Retinal protein profile changes using integrated SWATH and MRM-HR MS were studied in guinea pigs at 3- and 21-days of age, where the axial elongation was significantly detected. Differential proteins expressions were identified, and related to pathways which are important in postnatal development in retina, proliferation, breakdown of glycogen-energy and visual phototransduction. These results are significant as key retinal protein players and pathways that underlying emmetropization can be discovered. All raw data generated from IDA and SWATH acquisitions were accepted and published in the Peptide Atlas public repository (http://www.peptideatlas.org/) for general release (Data ID PASS00746). A more comprehensive analysis of this data can be obtained in the article "Integrated SWATH-based and targeted-based proteomics provide insights into the retinal emmetropization process in guinea pig" in Journal of Proteomics (Shan et al., 2018) [1].

6.
J Proteomics ; 181: 1-15, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29572162

RESUMO

Myopia is generally regarded as a failure of normal emmetropization process, however, its underlying molecular mechanisms are unclear. To investigate the retinal protein profile changes during emmetropization, we studied differential protein expressions of ocular growth in young guinea pigs at 3 and 21 days old respectively, when significant axial elongation was detected (P < 0.001, n = 10). Independent pooled retinal samples of both eyes were subjected to SWATH mass spectrometry (MS) followed by bioinformatics analysis using cloud-based platforms. A comprehensive retina SWATH ion-library consisting of 3138 (22,871) unique proteins (peptides) at 1% FDR was constructed. 40 proteins were found to be significantly up-regulated and 8 proteins down-regulated during emmetropization (≥log2 of 0.43 with ≥2 peptides matched per protein; P < 0.05). Using pathway analysis, the most significant pathway identifiable was 'phototransduction' (P = 1.412e-4). Expression patterns of 7 proteins identified in this pathway were further validated and confirmed (P < 0.05) with high-resolution Multiple Reaction Monitoring (MRM-HR) MS. Combining discovery and targeted proteomics approaches, this study for the first time comprehensively profiled protein changes in the guinea pig retina during normal emmetropization-associated eye growth. The findings of this study are also relevant to the myopia development, which is the result of failed emmetropization. SIGNIFICANCE: Myopia is considered as a failure of emmetropization. However, the underlying biochemical mechanism of emmetropization, a visually guided process in which eye grows towards the optimal optical state of clear vision during early development, is not well understood. Retina is known as the key tissue to regulate this active eye growth. we studied eye growth of young guinea pigs and harvested their retinal tissues. A comprehensive SWATH ion library with identification of a total 3138 unique proteins were established, in which 48 proteins exhibited significant differential expressions between 3 and 21 days old. After MRM-HR confirmation, 'phototransduction' were found as the most active pathway during emmetropic eye growth. This study is the first in discovering key retinal protein players and pathways which are presumably orchestrated by biological mechanism(s) underlying emmetropization.


Assuntos
Proteínas do Olho/biossíntese , Regulação da Expressão Gênica , Miopia/metabolismo , Proteômica , Retina/metabolismo , Animais , Modelos Animais de Doenças , Cobaias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...