Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39274084

RESUMO

Waste rubber tires are an area of global concern in relation to reducing the consumption of petrochemical products and environmental pollution. Herein, eco-friendly high-performance thermoplastic polyurethane (PU) elastomers were successfully in-situ synthesized through the incorporation of ground tire rubber (GTR). The excellent wet-skid resistance of PU/GTR elastomer was achieved by using mixed polycaprolactone polyols with Mn = 1000 g/mol (PCL-1K) and PCL-2K as soft segments. More importantly, an efficient solution to balance the contradiction between dynamic heat build-up and wet-skid resistance in PU/GTR elastomers was that low heat build-up was realized through the limited friction between PU molecular chains, which was achieved with the help of the network structure formed from GTR particles uniformly distributed in the PU matrix. Impressively, the tanδ at 60 °C and the DIN abrasion volume (Δrel) of the optimal PU/GTR elastomer with 59.5% of PCL-1K and 5.0% of GTR were 0.03 and 38.5 mm3, respectively, which are significantly lower than the 0.12 and 158.32 mm3 for pure PU elastomer, indicating that the PU/GTR elastomer possesses extremely low rolling resistance and excellent wear resistance. Meanwhile, the tanδ at 0 °C of the above-mentioned PU/GTR elastomer was 0.92, which is higher than the 0.80 of pure PU elastomer, evidencing the high wet-skid resistance. To some extent, the as-prepared PU/GTR elastomer has effectively solved the "magic triangle" problem in the tire industry. Moreover, this novel research will be expected to make contributions in the upcycling of waste tires.

2.
Des Monomers Polym ; 27(1): 87-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139779

RESUMO

Herein, poly(pentanediamine terephthalamide) (PA5T) homopolymer was synthesized via a salt-forming reaction+solid state polycondensation method using bio-based 1,5-pentanediamine and terephthalic acid as the primary raw materials. To address the issue of its narrower processing window, poly(hexamethylene terephthalamide)(PA6T), which also cannot be melt processed due to the processing window is negative, was introduced into its molecular chain to synthesize poly (pentanediamine/hexanediamine terephthaloyl) (PA5T-co-6T) copolymers. The structures were investigated by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance carbon spectroscopy (13C-NMR). Furthermore, the melting temperature, crystallization temperature, thermal stability, and crystal growth mode of the polymer were tested and analyzed using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide-angle x-ray diffraction (WAXD), respectively. The results demonstrate that the crystal growth mode gradually changes from three-dimensional spherical growth to two-dimensional disk-like or three-dimensional spherical growth with the increase of 6T chain segment content. Simultaneously, the crystallization temperature, melting temperature, and crystallization rate of the polymer all showed a trend of decreasing first and then increasing, which was due to the combined effects of the increase in the content of 6T chain segments on the molecular-chain structure and crystal structure of the polymer. Bio-based PA5T-co-6T has excellent heat resistance and a wider processing window than PA5T and PA6T, which possesses great application prospects in the fields of automotive, electronic appliances, and LED optics.

3.
RSC Adv ; 13(26): 17874-17882, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37323451

RESUMO

The rapid consumption of fossil resources and its adverse impact on the environment require the use of bio-based materials to replace petrochemical products. In this study, we present a bio-based, heat-resistant engineering plastic, poly(pentamethylene terephthalamide) (nylon 5T). To address the issues of the narrow processing window and difficulty in melting processing of nylon 5T, we introduced more flexible decamethylene terephthalamide (10T) units to create a copolymer, nylon 5T/10T. The chemical structure was confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (13C-NMR). We investigated the influence of 10T units on the thermal performance, crystallization kinetics, crystallization activation energy, and crystal structures of the copolymers. Our results demonstrate that the crystal growth mode of nylon 5T is a two-dimensional discoid growth pattern, while nylon 5T/10T exhibits a two-dimensional discoid or three-dimensional spherical growth pattern. The melting temperature, crystallization temperature, and crystallization rate first decrease and then increase, and crystal activation energy first increases and then decreases as a function of 10T units. These effects are attributed to the combined impact of molecular chain structure and polymer crystalline region. Bio-based nylon 5T/10T shows excellent heat resistance (melting temperature > 280 °C) and a wider processing window than nylon 5T and 10T, which is a promising heat-resistant engineering plastic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA