Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Physiol ; 13: 832730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464097

RESUMO

In insects, melanism plays important roles in defense, immunoreactions, and body color. The underlying molecular mechanisms of melanism in different insects are diverse and remain elusive. In contrast to another silkworm, Bombyx mori, the Chinese oak silkworm, Antheraea pernyi, produces melanic pupae under natural environmental conditions. DOPA and dopamine synthesis are crucial for melanin formation. Disruption of these processes reportedly influences body colors in many insects. Most research focuses on newly emerged pupae, and the larval process preceding pupation remains unknown. Due to the large size and long pupation period in A. pernyi, the entire process was studied at least every 12 h. The expression patterns of tyrosine hydroxylase (TH) and DOPA decarboxylase (DDC), which are involved in DOPA and dopamine synthesis in the epidermis, were evaluated during larval-pupal metamorphosis. We also performed RNA interference (RNAi) and used enzyme inhibitors to examine morphological changes. The amino acid sequences of TH and DDC share 90.91% and 86.64% identity with those of B. mori. TH and DDC expression was upregulated during the 48-72 h period prior to pupal emergence, especially at 60 h. RNAi of TH and DDC induced partial melanism in some pupae. The inhibitors 3-iodo-tyrosine (3-IT) and L-α-methyl-DOPA (L-DOPA) influenced pupal melanization. Different concentrations of inhibitors led to pupal deformity and even mortality. Four different monoamines, only DOPA and Dopamine synthezed from Tyrosine will be influenced by TH and DDC inhibitor. These results indicate that TH and DDC are key genes associated with pupal melanization during larval-pupal transformation in A. pernyi. Overall, our results suggest that TH and DDC expression alterations in a particular stage can affect body color, setting the molecular basis for artificial control of pupal melanization.

2.
Insects ; 12(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34442265

RESUMO

The Chinese oak silkworm is commonly used in pupal diapause research. In this study, a long photoperiod was used to trigger pupal diapause termination. Genes encoding three hormones, namely prothoracicotropic hormone (PTTH), ecdysis triggering hormone (ETH), and eclosion hormone (EH), were studied. Additionally, ecdysteroids (mainly 20-hydroxyecdysone, 20E) were quantified by HPLC. Pupal diapause stage was determined by measuring respiratory intensity. The pupae enter a low metabolic rate, which starts approximately 1 month after pupal emergence. ApPTTH expression showed a small increase at 14 days and then a larger increase from 35 days under the long photoperiod treatment. A similar pattern was observed for the titer of 20E in the hemolymph. However, ApETH expression later increased under the long photoperiod treatment (42 days) just before eclosion. Moreover, ApEH expression increased from 21 to 35 days, and then decreased before ecdysis. These results suggest that hormone-related gene expression is closely related to pupal development. Our study lays a foundation for future diapause studies in A. pernyi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA