Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Food Chem Toxicol ; 185: 114476, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301993

RESUMO

Indigo naturalis (IN) is a dried powder derived from plants such as Baphicacanthus cusia (Neeks) Bremek., Polygonum tinctorium Ait. and Isatis indigotica Fork. It has a historical application as a dye in ancient India, Egypt, Africa and China. Over time, it has been introduced to China and Japan for treatment of various ailments including hemoptysis, epistaxis, chest discomfort, and aphtha. Clinical and pre-clinical studies have widely demonstrated its promising effects on autoimmune diseases like psoriasis and Ulcerative colitis (UC). Despite the documented efficacy of IN in UC patients, concerns have been raised on the development of adverse effects with long term consumption, prompting a closer examination of its safety and tolerability in these contexts. This review aims to comprehensively assess the efficacy of IN in both clinical and pre-clinical settings, with a detailed exploration of the mechanisms of action involved. Additionally, it summarizes the observed potential toxicity of IN in animal and human settings was summarized. This review will deepen our understanding on the beneficial and detrimental effects of IN in UC, providing valuable insights for its future application in patients with this condition.


Assuntos
Colite Ulcerativa , Medicamentos de Ervas Chinesas , Psoríase , Animais , Humanos , Índigo Carmim/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Medicamentos de Ervas Chinesas/uso terapêutico , Psoríase/induzido quimicamente , China
2.
Am J Chin Med ; 52(1): 89-122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38351704

RESUMO

Liver Stagnation and Spleen Deficiency (LSSD) is a Chinese Medicine (CM) pattern commonly observed in gastrointestinal (GI) diseases, yet its biological nature remains unknown. This limits the global use of CM medications for treating GI diseases. Recent studies emphasize the role of gut microbiota and their metabolites in the pathogenesis and treatment of LSSD-associated GI diseases. There is increasing evidence supporting that an altered gut microbiome in LSSD patients or animals contributes to GI and extra-intestinal symptoms and affects the effectiveness of CM therapies. The gut microbiota is considered to be an essential component of the biological basis of LSSD. This study aims to provide an overview of existing research findings and gaps for the pathophysiological study of LSSD from the gut microbiota perspective in order to understand the relationship between the CM pattern and disease progression and to optimize CM-based diagnosis, prevention, and therapy.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Animais , Humanos , Medicina Tradicional Chinesa
3.
Nat Commun ; 15(1): 1034, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310105

RESUMO

Obesity, a global health challenge, is a major risk factor for multiple life-threatening diseases, including diabetes, fatty liver, and cancer. There is an ongoing need to identify safe and tolerable therapeutics for obesity management. Herein, we show that treatment with artesunate, an artemisinin derivative approved by the FDA for the treatment of severe malaria, effectively reduces body weight and improves metabolic profiles in preclinical models of obesity, including male mice with overnutrition-induced obesity and male cynomolgus macaques with spontaneous obesity, without inducing nausea and malaise. Artesunate promotes weight loss and reduces food intake in obese mice and cynomolgus macaques by increasing circulating levels of Growth Differentiation Factor 15 (GDF15), an appetite-regulating hormone with a brainstem-restricted receptor, the GDNF family receptor α-like (GFRAL). Mechanistically, artesunate induces the expression of GDF15 in multiple organs, especially the liver, in mice through a C/EBP homologous protein (CHOP)-directed integrated stress response. Inhibition of GDF15/GFRAL signalling by genetic ablation of GFRAL or tissue-specific knockdown of GDF15 abrogates the anti-obesity effect of artesunate in mice with diet-induced obesity, suggesting that artesunate controls bodyweight and appetite in a GDF15/GFRAL signalling-dependent manner. These data highlight the therapeutic benefits of artesunate in the treatment of obesity and related comorbidities.


Assuntos
Fator 15 de Diferenciação de Crescimento , Obesidade , Camundongos , Masculino , Animais , Artesunato/farmacologia , Artesunato/uso terapêutico , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Primatas , Macaca/metabolismo
4.
J Integr Med ; 21(6): 550-560, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37989695

RESUMO

OBJECTIVE: Functional constipation (FC) is a common intestinal disease worldwide. Despite the presence of criteria such as Roman IV, there is no standardized diagnosis and treatment algorithm in Hong Kong that combines both Western and Chinese medicine approaches. This study integrates current effective and safe diagnosis and treatment methods for FC and provides a clear and scientific pathway for clinical professionals and patients. METHODS: A systematic search of the PubMed, Cochrane Library, and China National Knowledge Infrastructure databases was performed from their inception to June 30th, 2022, collecting the current evidence about the efficacious integrative management for FC. We organized a meeting of professionals in fields relevant to treatment and management of FC to develop a consensus agreement on clinical pathway process. RESULTS: We developed a clinical pathway for the treatment of FC based on the most recent published guidelines and consultation with experts. This pathway includes a hierarchy of recommendations for every step of the clinical process, including clinical intake, diagnostic examination, recommended labs, diagnostic flowchart, and guidance for selection of therapeutic drugs. CONCLUSION: This pathway establishes clinical standards for the diagnosis and treatment of FC using Chinese medicine and Western medicine; it will help to provide high-quality medical services in Hong Kong for patients with FC. Please cite this article as: Wei DJ, Li HJ, Lyu ZP, Lyu AP, Bian ZX, Zhong LL. A clinical pathway for integrative medicine in the treatment of functional constipation in Hong Kong, China. J Integr Med. 2023; 21(6): 550-560.


Assuntos
Medicina Integrativa , Humanos , Hong Kong , Procedimentos Clínicos , China , Constipação Intestinal/diagnóstico , Constipação Intestinal/terapia
5.
Nat Commun ; 14(1): 4986, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591886

RESUMO

The incidence of metabolic syndrome is significantly higher in patients with irritable bowel syndrome (IBS), but the mechanisms involved remain unclear. Gut microbiota is causatively linked with the development of both metabolic dysfunctions and gastrointestinal disorders, thus gut dysbiosis in IBS may contribute to the development of metabolic syndrome. Here, we show that human gut bacterium Ruminococcus gnavus-derived tryptamine and phenethylamine play a pathogenic role in gut dysbiosis-induced insulin resistance in type 2 diabetes (T2D) and IBS. We show levels of R. gnavus, tryptamine, and phenethylamine are positively associated with insulin resistance in T2D patients and IBS patients. Monoassociation of R. gnavus impairs insulin sensitivity and glucose control in germ-free mice. Mechanistically, treatment of R. gnavus-derived metabolites tryptamine and phenethylamine directly impair insulin signaling in major metabolic tissues of healthy mice and monkeys and this effect is mediated by the trace amine-associated receptor 1 (TAAR1)-extracellular signal-regulated kinase (ERK) signaling axis. Our findings suggest a causal role for tryptamine/phenethylamine-producers in the development of insulin resistance, provide molecular mechanisms for the increased prevalence of metabolic syndrome in IBS, and highlight the TAAR1 signaling axis as a potential therapeutic target for the management of metabolic syndrome induced by gut dysbiosis.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistência à Insulina , Síndrome do Intestino Irritável , Síndrome Metabólica , Humanos , Animais , Camundongos , Disbiose , Fenetilaminas/farmacologia , Triptaminas/farmacologia
6.
Cell Host Microbe ; 31(1): 33-44.e5, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36495868

RESUMO

Diarrhea-predominant irritable bowel syndrome (IBS-D), a globally prevalent functional gastrointestinal (GI) disorder, is associated with elevated serotonin that increases gut motility. While anecdotal evidence suggests that the gut microbiota contributes to serotonin biosynthesis, mechanistic insights are limited. We determined that the bacterium Ruminococcus gnavus plays a pathogenic role in IBS-D. Monocolonization of germ-free mice with R. gnavus induced IBS-D-like symptoms, including increased GI transit and colonic secretion, by stimulating the production of peripheral serotonin. R. gnavus-mediated catabolism of dietary phenylalanine and tryptophan generated phenethylamine and tryptamine that directly stimulated serotonin biosynthesis in intestinal enterochromaffin cells via a mechanism involving activation of trace amine-associated receptor 1 (TAAR1). This R. gnavus-driven increase in serotonin levels elevated GI transit and colonic secretion but was abrogated upon TAAR1 inhibition. Collectively, our study provides molecular and pathogenetic insights into how gut microbial metabolites derived from dietary essential amino acids affect serotonin-dependent control of gut motility.


Assuntos
Síndrome do Intestino Irritável , Animais , Camundongos , Serotonina/metabolismo , Diarreia/metabolismo
7.
Nat Commun ; 13(1): 7907, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36564389

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Angiotensin-converting enzyme 2 (ACE2) is an entry receptor for SARS-CoV-2. The full-length membrane form of ACE2 (memACE2) undergoes ectodomain shedding to generate a shed soluble form (solACE2) that mediates SARS-CoV-2 entry via receptor-mediated endocytosis. Currently, it is not known how the physiological regulation of ACE2 shedding contributes to the etiology of COVID-19 in vivo. The present study identifies Membrane-type 1 Matrix Metalloproteinase (MT1-MMP) as a critical host protease for solACE2-mediated SARS-CoV-2 infection. SARS-CoV-2 infection leads to increased activation of MT1-MMP that is colocalized with ACE2 in human lung epithelium. Mechanistically, MT1-MMP directly cleaves memACE2 at M706-S to release solACE218-706 that binds to the SARS-CoV-2 spike proteins (S), thus facilitating cell entry of SARS-CoV-2. Human solACE218-706 enables SARS-CoV-2 infection in both non-permissive cells and naturally insusceptible C57BL/6 mice. Inhibition of MT1-MMP activities suppresses solACE2-directed entry of SARS-CoV-2 in human organoids and aged mice. Both solACE2 and circulating MT1-MMP are positively correlated in plasma of aged mice and humans. Our findings provide in vivo evidence demonstrating the contribution of ACE2 shedding to the etiology of COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Interações Hospedeiro-Patógeno , Metaloproteinase 14 da Matriz , SARS-CoV-2 , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Camundongos Endogâmicos C57BL , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
9.
Chin Med ; 17(1): 99, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35996191

RESUMO

OBJECTIVES: This study aimed to evaluate the effects of Chinese Medicine (CM) on the health condition of the post-COVID-19 patients, particularly with the CM Syndrome diagnosis and Body Constitutions (BC), as well as related clinical characteristics. METHODS: 150 participants who had COVID-19 and discharged from Hong Kong public hospitals were recruited. They were provided with three to six months of CM treatments, during which assessments were made per month and at follow-up on their CM syndromes, BC, lung functions, and other medical conditions. This study was divided into two parts: (1) Retrospective survey: medical history of participants during COVID-19 hospitalization was collected during the baseline visit; (2) Prospective observation and assessments: clinical symptoms, lung functions, and BC status were evaluated in participants receiving CM treatment based on syndrome differentiation and clinical symptoms. RESULTS: The median hospitalization period was 16 days. Symptoms were presented in 145 (96.6%) patients at the day they were diagnosed with COVID-19. Fever, fatigue, and dry cough were the most common symptoms, exhibiting in 59.3% (89 of 150), 55.3% (83 of 150), and 46% (70 of 150) participants, respectively. Among the 150 post-COVID patients, majority (71.3%) were of the two particular post-COVID CM Syndromes (Qi Deficiency of Lung and Spleen, and Qi and Yin Deficiency). Upon CM treatment, there was an observable increase in participants reaching a balanced BC (i.e. healthy body conditions). The increase was observed to be more prominent in those without the particular CM Syndromes compared to those with the CM Syndromes. Main clinical symptoms in participants with the CM Syndromes decreased upon CM treatment. Occurrence of fatigue also dropped after CM treatment though not all accompanied clinical symptoms were resolved fully. Further to the improvement in terms of CM assessments, lung functions of the participants were found to show improvement after treatment. Both the performance in 6MWT and scores in the LFQ improved upon CM treatments (P < 0.05). CONCLUSION: This study provided evidence for individualized CM treatment on COVID-19 rehabilitation concerning the clinical symptoms improvements, lung functions improvement, and achieving a balanced BC. It is believed that CM may be a key to further promote rehabilitation and resolution of residual symptoms. Long-term large scale follow-up studies on sub-categorising post-COVID patients according to different CM syndromes would be required to further elucidate treatment of persistent symptoms that may be associated with long-COVID.

10.
Nat Commun ; 13(1): 3749, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768470

RESUMO

Insulin sensitivity progressively declines with age. Currently, the mechanism underlying age-associated insulin resistance remains unknown. Here, we identify membrane-bound matrix metalloproteinase 14 (MT1-MMP/MMP14) as a central regulator of insulin sensitivity during ageing. Ageing promotes MMP14 activation in insulin-sensitive tissues, which cleaves Insulin Receptor to suppress insulin signaling. MT1-MMP inhibition restores Insulin Receptor expression, improving insulin sensitivity in aged mice. The cleavage of Insulin Receptor by MT1-MMP also contributes to obesity-induced insulin resistance and inhibition of MT1-MMP activities normalizes metabolic dysfunctions in diabetic mouse models. Conversely, overexpression of MT1-MMP in the liver reduces the level of Insulin Receptor, impairing hepatic insulin sensitivity in young mice. The soluble Insulin Receptor and circulating MT1-MMP are positively correlated in plasma from aged human subjects and non-human primates. Our findings provide mechanistic insights into regulation of insulin sensitivity during physiological ageing and highlight MT1-MMP as a promising target for therapeutic avenue against diabetes.


Assuntos
Resistência à Insulina , Metaloproteinase 14 da Matriz , Receptor de Insulina , Fatores Etários , Animais , Humanos , Insulina/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Camundongos , Receptor de Insulina/metabolismo , Transdução de Sinais
11.
Theranostics ; 12(7): 3329-3344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547744

RESUMO

CRISPR-Cas9 is a Nobel Prize-winning robust gene-editing tool developed in the last decade. This technique enables a stable genetic engineering method with high precision on the genomes of all organisms. The latest advances in the technology include a genome library screening approach, which can detect survival-essential and drug resistance genes via gain or loss of function. The versatile machinery allows genomic screening for gene activation or inhibition, and targets non-coding sequences, such as promoters, miRNAs, and lncRNAs. In this review, we introduce the emerging high-throughput CRISPR-Cas9 library genome screening technology and its working principles to detect survival and drug resistance genes through positive and negative selection. The technology is compared with other existing approaches while focusing on the advantages of its variable applications in anti-cancer drug discovery, including functions and target identification, non-coding RNA information, actions of small molecules, and drug target discoveries. The combination of the CRISPR-Cas9 system with multi-omic platforms represents a dynamic field expected to advance anti-cancer drug discovery and precision medicine in the clinic.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Engenharia Genética , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
12.
Am J Chin Med ; 50(3): 723-732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35331086

RESUMO

Constipation is a very common medical condition worldwide, negatively affecting patients' quality of life and healthcare system. Rhubarb, senna leaf, and aloe are three frequently used herbal medications for achieving regular bowel movement. Rhubarb is also a key ingredient in MaZiRenWan, a Chinese medicine formula used every so often for constipation in oriental countries. We reviewed and summarized the major chemical components from these three botanicals, including dianthrones, anthraquinone glycosides, free anthraquinones, and other polyphenols. The purgative actions of these constituents have been compared. Anthraquinone, especially its dianthrone compounds such as sennoside A and sennoside B, as natural stimulant laxatives, possesses significant effects to promote gastrointestinal motility and relieve functional constipation. Furthermore, the safety, reported side effects, and other benefits of anthraquinone compounds are presented. To date, many anti-constipation natural products are being used but their research is relatively limited, and thus, more investigations in this field are indeed needed.


Assuntos
Plantas Medicinais , Rheum , Antraquinonas/uso terapêutico , Constipação Intestinal/tratamento farmacológico , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Qualidade de Vida , Rheum/química , Senosídeos
13.
Phytomedicine ; 99: 154001, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35240530

RESUMO

BACKGROUND: Zhen-Wu-Bu-Qi Decoction (ZWBQD), a traditional Chinese medicine formula comprising Poria, Radix Paeoniae Alba, Rhizoma Atractylodis Macrocephalae, Rhizoma Zingiberis Recens, Radix Codonopsis and Rhizoma Coptidis, is used for treating ulcerative colitis (UC). In a previous study, we have reported ZWBQD mitigates the severity of dextran sulfate sodium (DSS)-induced colitis in mice. HYPOTHESIS: In this study, we aimed to understand the systemic actions and underlying mechanisms of ZWBQD on experimental colitis in mice. METHODS: We used multi-omics techniques and immunoblotting approach to study the pharmacological actions and mechanisms of ZWBQD in DSS-induced chronic colitic mice. RESULTS: We showed that ZWBQD exhibited potent anti-inflammatory properties and significantly protected DSS-induced colitic mice against colon injury by regulating the PI3K-AKT, MAPK signaling pathway and NF-κB signaling pathways. We also revealed that ZWBQD significantly ameliorated gut microbiota dysbiosis and abnormalities of tryptophan catabolites induced by DSS. CONCLUSIONS: We demonstrated that the therapeutic effects of ZWBQD on experimental colitis are mediated by regulating multiple signaling pathways and modulation of gut microbiota. Our study employed an integrative strategy to elucidate novel mechanisms of ZWBQD, which provides new insights into the development of Chinese herbal medicine-based therapeutics for UC.

14.
Chin Med ; 17(1): 31, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236375

RESUMO

BACKGROUND: Constipation is a common problem among advanced cancer patients; however, many of them find limited effective from current therapies. Thus, we aimed to test the effect of a traditional Chinese herbal formula, modified MaZiRenWan (MZRW), by comparing with placebo among palliative cancer patients with constipation. METHODS: This is a randomized, double-blind, placebo-controlled trial. Participants aged over 18 were recruited and randomized to MZRW or placebo group in addition to current prescriptions (including ongoing laxatives treatment) for two weeks. Exclusion criteria included cognitive impairment, presence of a colostomy or gastrointestinal obstruction and estimated life expectancy of less than one month. Individualized modification of MZRW was allowed according to the traditional Chinese medicine (TCM) pattern of patient. The primary outcome was the global assessment of improvement, which reflected whether the constipation had improved, remained the same or worsened. RESULTS: Sixty patients, with mean age 75.2 years (range 47-95 years), were randomized to MZRW or placebo group. Among the MZRW group, 59.3% (16/27) had improvement in the global assessment score, as compared with 28.6% (8/28) of the placebo group (p-value = 0.022). Besides, the MZRW group had significant increase in stool frequency, and reduction in constipation severity and straining of defecation (p-value < 0.05). No serious adverse event was reported due to the research medication. CONCLUSION: This pilot trial suggests modified MZRW is well-tolerated and effective for relief of constipation in patients with advance cancer. It could be considered as a potential treatment option for constipation in palliative care. TRIAL REGISTRATION: The trial had been registered in ClinicalTrials.gov with identifier number NCT02795390 [ https://clinicaltrials.gov/ct2/show/NCT02795390 ] on June 10, 2016.

15.
Front Immunol ; 13: 820524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222397

RESUMO

P2Y1 receptor is a G-protein-coupled receptor that plays a critical role in the immune response of inflammatory bowel diseases. However, its regulatory effects on CD4+ T cell response have not been fully elucidated. The study aimed to characterize the role of P2Y1R in Th17 cell differentiation and colonic inflammation. Our results demonstrated that P2Y1R was significantly increased in the splenocytes of colitic mice, which was positively associated with the expression of RORγt and IL-17A. P2Y1R deficiency significantly ameliorated DSS-induced colitis and its Th17 responses. In parallel, P2Y1R deficiency greatly impaired the differentiation of Th17 cell, down-regulated the mRNA expression of IL-17A and RORγt, and protein expression of RORγt in vitro. More importantly, it was found that P2Y1R deficiency markedly increased AMPK phosphorylation of Th17 polarized CD4+ T cells, and antagonist of AMPK significantly reversed the inhibitory effect of P2Y1R deficiency on Th17 cell generation in vivo and in vitro. Overall, these findings demonstrated that P2Y1R deficiency could suppress Th17 cell differentiation in an AMPK-dependent manner to ameliorate colitis, and P2Y1R can act as an important regulator of Th17 cell differentiation to control colonic inflammation.


Assuntos
Colite , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Diferenciação Celular , Colite/induzido quimicamente , Colite/metabolismo , Inflamação/metabolismo , Interleucina-17/metabolismo , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Células Th17
16.
Nat Metab ; 4(2): 203-212, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35177851

RESUMO

GDNF-family receptor a-like (GFRAL) has been identified as the cognate receptor of growth/differentiation factor 15 (GDF15/MIC-1), considered a key signaling axis in energy homeostasis and body weight regulation. Currently, little is known about the physiological regulation of the GDF15-GFRAL signaling pathway. Here we show that membrane-bound matrix metalloproteinase 14 (MT1-MMP/MMP14) is an endogenous negative regulator of GFRAL in the context of obesity. Overnutrition-induced obesity increased MT1-MMP activation, which proteolytically inactivated GFRAL to suppress GDF15-GFRAL signaling, thus modulating the anorectic effects of the GDF15-GFRAL axis in vivo. Genetic ablation of MT1-MMP specifically in GFRAL+ neurons restored GFRAL expression, resulting in reduced weight gain, along with decreased food intake in obese mice. Conversely, depletion of GFRAL abolished the anti-obesity effects of MT1-MMP inhibition. MT1-MMP inhibition also potentiated GDF15 activity specifically in obese phenotypes. Our findings identify a negative regulator of GFRAL for the control of non-homeostatic body weight regulation, provide mechanistic insights into the regulation of GDF15 sensitivity, highlight negative regulators of the GDF15-GFRAL pathway as a therapeutic avenue against obesity and identify MT1-MMP as a promising target.


Assuntos
Metaloproteinase 14 da Matriz , Obesidade , Animais , Anorexia/metabolismo , Peso Corporal , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Metaloproteinase 14 da Matriz/uso terapêutico , Camundongos , Obesidade/metabolismo
17.
Int J Med Sci ; 19(1): 175-185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975311

RESUMO

Our previous study found that the combination of halofuginone (HF) and artemisinin (ATS) synergistically arrest colorectal cancer (CRC) cells at the G1/G0 phase of the cell cycle; however, it remains unclear whether HF-ATS induces cell death. Here we report that HF-ATS synergistically induced caspase-dependent apoptosis in CRC cells. Specifically, both in vitro and in vivo experiments showed that HF or HF-ATS induces apoptosis via activation of caspase-9 and caspase-8 while only caspase-9 is involved in ATS-induced apoptosis. Furthermore, we found HF or HF-ATS induces autophagy; ATS can't induce autophagy until caspase-9 is blocked. Further analyzing the crosstalk between autophagic and caspase activation in CRC cells, we found autophagy is essential for activation of caspase-8, and ATS switches to activate capase-8 via induction of autophagy when caspase-9 is inhibited. When apoptosis is totally blocked, HF-ATS switches to induce autophagic cell death. This scenario was then confirmed in studies of chemoresistance CRC cells with defective apoptosis. Our results indicate that HF-ATS induces cell death via interaction between apoptosis and autophagy in CRC cells. These results highlight the value of continued investigation into the potential use of this combination in cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Artemisininas/farmacologia , Neoplasias Colorretais/patologia , Piperidinas/farmacologia , Quinazolinonas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Artemisininas/uso terapêutico , Autofagia/efeitos dos fármacos , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Sinergismo Farmacológico , Ativação Enzimática , Humanos , Piperidinas/uso terapêutico , Quinazolinonas/uso terapêutico , Receptor Cross-Talk
19.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34884651

RESUMO

Type 2 diabetes (T2D) is a worldwide prevalent metabolic disorder defined by high blood glucose levels due to insulin resistance (IR) and impaired insulin secretion. Understanding the mechanism of insulin action is of great importance to the continuing development of novel therapeutic strategies for the treatment of T2D. Disturbances of gut microbiota have been widely found in T2D patients and contribute to the development of IR. In the present article, we reviewed the pathological role of gut microbial metabolites including gaseous products, branched-chain amino acids (BCAAs) products, aromatic amino acids (AAAs) products, bile acids (BA) products, choline products and bacterial toxins in regulating insulin sensitivity in T2D. Following that, we summarized probiotics-based therapeutic strategy for the treatment of T2D with a focus on modulating gut microbiota in both animal and human studies. These results indicate that gut-microbial metabolites are involved in the pathogenesis of T2D and supplementation of probiotics could be beneficial to alleviate IR in T2D via modulation of gut microbiota.


Assuntos
Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/terapia , Humanos , Resistência à Insulina , Metaboloma , Probióticos/uso terapêutico
20.
Chin Med ; 16(1): 117, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34774080

RESUMO

BACKGROUND: Irritable bowel syndrome (IBS) is a common gastrointestinal functional disease. Adults with IBS may experience abdominal pain, change of bowel habits, and abnormal stool form without organic disease. IBS can seriously affect their work productivity and quality of life, especially diarrhea-predominant irritable bowel syndrome (IBS-D). The Chinese medicine JCM-16021 has been shown to be potentially effective in improving the symptoms of IBS-D based on a small scale clinical trial. Hence, a large scale clinical study is designed to further evaluate the efficacy and safety of the Chinese medicine JCM-16021 for IBS-D with traditional Chinese medicine (TCM) pattern of Liver Stagnation and Spleen Deficiency (LSSD). METHODS: This study is a multi-center, randomized, double-blind, placebo-controlled clinical trial. 392 eligible participants will be enrolled with 2-week run-in, 8-week treatment and 8-week follow-up. After run-in period, participants will be randomized to receive either the Chinese medicine JCM-16021 or placebo for 8 weeks, and will have post-treatment follow up for another 8 weeks. The primary outcome is the improvement rate on the global assessment of improvement (GAI) at week 10. The secondary outcomes consist of changes of IBS-D symptoms, TCM pattern improvement, IBS-Quality of Life (IBS-QoL), IBS-Symptom Severity Score (IBS-SSS), safety, etc. RESULTS: A standard protocol has been developed for the study. The protocol will provided a detailed procedure to conduct a clinical trial and verify if the Chinese medicine JCM-16021 would significantly improve the overall symptoms of IBS-D with LSSD pattern of TCM by relieving abdominal pain, reducing stool frequency, improving the stool consistency and improving quality of life. The consolidated evidence from the study can shed light on the treatment of IBS-D with Chinese medicine. CONCLUSION: The protocol will provide details for investigators about the study following SPIRIT Statement. High-quality evidence on the efficacy and safety of Chinese medicine JCM-16021 for IBS-D will be provided through strict compliance with the protocol. TRIAL REGISTRATION: ClinicalTrial.gov identifier: NCT03457324. Registered 8 February 2018, https://clinicaltrials.gov/ct2/show/NCT03457324?term=NCT03457324&draw=2&rank=1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...