Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 926: 172109, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38556021

RESUMO

In situ photocatalytic synthesis of H2O2 for disinfection has attracted widespread attention because it is a clean and environmentally friendly sterilization method. Graphitic carbon nitride has been used as a very selective photocatalyst for H2O2 generation but has some limitations (e.g., insufficient light absorption, rapid electron-hole recombination, and slow direct two-electron reduction processes) that prevent efficient H2O2 production. In this study, potassium-doped graphite carbon nitride with nitrogen vacancies (NDKCN) was prepared using a simple method involving a thermal fusion salt and N2 calcination, which possessed an ultrathin nanosheet structure (1.265 nm) providing abundant active sites. Synergistic effects caused by nitrogen vacancies and K+ and I- doping in the NDKCN photocatalyst gave the NDKCN a good ability to absorb light, undergo fast charge transfer, and give a high photoelectric current response. The optimized photocatalytic H2O2 yield of the NDKCN was 780.1 µM·g-1·min-1, which was 10 times the yield of the pristine g-C3N4. Tests involving quenching reactive species, electron spin resonance, and rotating disk electrodes indicated that one-step two-electron direct reduction on the NDKCN caused excellent H2O2 generation performance. The ability to efficiently generate H2O2 in situ gave NDKCN an excellent bactericidal performance, and 7.3 log10 (colony-forming units·mL-1) of Escherichia coli were completely eliminated within 80 min. Scanning electron microscopy images before and after sterilization indicated the changes in bacteria caused by the catalytic activity. The new g-C3N4-based photocatalyst and similar rationally designed photocatalysts with doping and defects offer efficient and simple in situ H2O2 sterilization.

2.
Sci Total Environ ; 926: 172061, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38552973

RESUMO

China faces a serious challenge with water pollution posed by potentially toxic elements (PTEs). Comprehensive and reliable environmental risk assessment is paramount for precise pollution prevention and control. Previous studies generally focused on a single environmental compartment within small regions, and the uncertainty in risk calculation is not fully considered. This study revealed the current exposure status of 11 PTEs in surface water and sediment across China using previously reported concentration data in 301 well-screened articles. Ecological and human health risks were evaluated and the uncertainty related to calculation parameters and exposure dataset were quantified. PTEs of high concern were further identified. Results showed Mn and Zn had the highest concentration levels, while Hg and Cd had the lowest concentrations in both surface water and sediment. Risk assessment of individual PTE showed that high-risk PTEs varied by risk receptors and environmental compartments. Nationwide, the probability of aquatic organisms being affected by Mn, Zn, Cu, and As in surface water exceeded 10 %. In sediment, Cd and Hg exhibited high and considerable risk, respectively. As was identified as the major PTE threatening human health as its carcinogenic risk was 1.45 × 10-4 through direct ingestion. Combined risk assessment showed the PTE mixture in surface water and sediment posed medium and high ecological risk with the risk quotient and potential ecological risk index of 1.76 and 558.36, respectively. Adverse health effects through incidental ingestion and dermal contact during swimming were negligible. This study provides a nationwide risk assessment of PTEs in China's aquatic environment and the robustness is verified, which can serve as a practical basis for policymakers to guide the early warning and precise management of water pollution.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Humanos , Metais Pesados/análise , Monitoramento Ambiental/métodos , Água , Cádmio , Mercúrio/análise , Poluição da Água , China , Medição de Risco , Poluentes do Solo/análise
3.
J Hazard Mater ; 467: 133756, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38350322

RESUMO

An efficient cathode for a Fenton-like reaction based on hydrogen peroxide (H2O2) has significant implications for the potential application of the advanced oxidation process. However, the low H2O2 selectivity and efficient activation remain challenging in wastewater treatment. In the present study, a single Fe atom doped, nitrogen-coordinated molybdenum disulfide (Fe1/N/MoS2) cathode that exhibited asymmetric wettability and self-absorption molecular oxygen was successfully prepared for pollutant degradation. The X-ray absorption near-edge structure and extended X-ray absorption fine structure of Fe1N3 in the Fe1/N/MoS2 catalyst were determined. The electronic structure demonstrated favorable H2O2 selectivity (75%) in a neutral solution and the cumulative hydroxyl radical concentration was 14 times higher than the pure carbon felt. After 10 consecutive reaction experiments, the removal ratio of paracetamol still reached 97%, and the catalytic performance did not decrease significantly. This work deeply understands the catalytic mechanism of Fenton-like reaction between single Fe atom and MoS2 double reaction sites, and proves that the regulation of the electronic structure of Fe single atom is an effective strategy to improve the activity of Fenton-like reaction.

4.
J Environ Manage ; 338: 117841, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003226

RESUMO

Nitrogen cycling plays a key role in maintaining river ecological functions which are threatened by anthropogenic activities. The newly discovered complete ammonia oxidation, comammox, provides novel insights into the ecological effects of nitrogen on that it oxidizes ammonia directly to nitrate without releasing nitrite as canonical ammonia oxidization conducted by AOA or AOB which is believed to play an important role in greenhouse gas generation. Theoretically, contribution of commamox, AOA and AOB to ammonia oxidization in rivers might be impacted by anthropogenic land-use activities through alterations in flow regime and nutrient input. While how land use pattern affects comammox and other canonical ammonia oxidizers remains elusive. In this study, we examined the ecological effects of land use practices on the activity and contribution of three distinctive groups of ammonia oxidizers (AOA, AOB, comammox) as well as the composition of comammox bacterial communities from 15 subbasins covering an area of 6166 km2 in North China. The results showed that comammox dominated nitrification (55.71%-81.21%) in less disturbed basins characterized by extensive forests and grassland, while AOB became the major player (53.83%-76.43%) in highly developed basins with drastic urban and agricultural development. In addition, increasing anthropogenic land use activities within the watershed lowered the alpha diversity of comammox communities and simplified the comammox network. Additionally, the alterations of NH4+-N, pH and C/N induced by land use change were found to be crucial drivers in determining the distribution and activity of AOB and comammox. Together, our findings cast a new light on aquatic-terrestrial linkages from the view of microorganism-mediated nitrogen cycling and can further be applied to target watershed land use management.


Assuntos
Archaea , Rios , Amônia , Efeitos Antropogênicos , Oxirredução , Filogenia , Microbiologia do Solo , Nitrificação , Nitrogênio
5.
Chemosphere ; 315: 137732, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36608882

RESUMO

Solar steam generation (SSG) is considered an effective solution to the global shortage of freshwater resources. To solve the practical application challenges of SSG in remote outdoor environments where electricity is scarce, it is of great importance to developing new solar evaporators. In this study, a three-dimensional (3D) biochar solar evaporator based on carbonized grooved straw was prepared from agricultural waste corn straw, which had high solar energy conversion efficiency and excellent salt resistance. The existence of grooves increases the surface area to absorb more sunlight and makes the light multilevel reflection improve the evaporation rate. The excellent light absorption, super hydrophilic, and heat shielding properties of 3D carbonized grooved straw resulted in a good evaporation rate (1.57 kg⋅m-2·h-1) and energy efficiency (85.9%) under 1 sun irradiation. The 3D grooved biochar solar distiller also demonstrated efficient formation evaporation performance and excellent salt resistance in practical applications in seawater desalination and surface water purification. The 3D grooved biochar solar distiller prepared from agricultural waste has the advantages of being economical and environmentally friendly, with good application prospects.


Assuntos
Energia Solar , Vapor , Luz Solar , Cloreto de Sódio
6.
ACS Appl Mater Interfaces ; 15(1): 1326-1338, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36563169

RESUMO

Heterogeneous Fenton-like reactions (HFLRs) based on the in situ electrochemical generation of hydrogen peroxide (H2O2) are one of the green methods to remediate organic pollutants in wastewater. However, the design of Fenton-like catalysts with specific active sites and high pollutant degradation rate is still challenging. Here, MoS2-MoC and MoS2-Mo2N catalytic cathodes with heterojunctions were successfully prepared, and the mechanism by which hydroxyl radicals and singlet oxygen (1O2) were generated cleanly without adding chemical additives other than oxygen was clarified. The composite catalysts contained more sulfur vacancies, and the catalytic cathode achieved a high paracetamol pollutant degradation efficiency with 0.17 kWh g-1 TOC specific energy consumption. And almost 5 times higher activity was achieved compared to a pure MoS2 catalytic cathode. Experimental studies confirmed that the production of 1O2 was based on the transformation of superoxide radicals by Mo6+, and 1O2 accounted for approximately 66% of the total degradation and enhanced the nonradical behavior in the reaction. This work provides a sustainable strategy for pollutant utilization, which is valuable for solving the difficult problems of HFLRs and developing new environmental remediation technologies.

7.
J Hazard Mater ; 443(Pt B): 130315, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36368069

RESUMO

Removal and detoxification of chlorobenzenes have attracted public concern, multiple active sites single-atom Fe and single-atom Ni composite nitrogen-doped graphene (FeSA/CN/NiSA) cathode catalyst supplied generation and adsorption capacity of hydrogen and hydroxyl active species. M-O active sites coupled with M-N improved activity and stability of the catalyst, and decreased bond breaking energy barrier of C-Cl, FeSA/CN/NiSA-NiF cathode showed superior removal performance of chlorinated aromatic hydrocarbons (monochlorobenzene: 98.9%, dichlorobenzene: over 90.4%, trichlorobenzene: over 85.7%) and selectivity. Chlorobenzenes were dechlorinated under low stepwise voltage on the FeSA/CN/NiSA-NiF cathode. The efficiencies of stepwise dechlorination reactions of chlorobenzenes were all above 76%, Faradaic efficiencies were above 71.8%. The FeSA/CN/NiSA-NiF cathode was not sensitive to the molecular structure and has overcome the high energy barrier of chlorobenzenes molecular structure. The electrophilic attack of H*ads formed hyperconjugation bond weakened the possibility of the Cl atom forming a bond with the benzene ring, and was favorable for the Cl position to achieve single-electron transfer dechlorination. The selective stepwise dechlorination degradation of chlorobenzenes by FeSA/CN/NiSA-NiF cathode with multiple active sites demonstrated the advantaged performance of M-O and M-N active sites coupled synergistic in electrochemical reduction and degradation, providing a strategy for product-selective degradation of chlorinated aromatic hydrocarbons.


Assuntos
Clorobenzenos , Domínio Catalítico , Clorobenzenos/química , Catálise , Eletrodos
8.
Sci Total Environ ; 853: 158556, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36075427

RESUMO

Brownification is an increasingly concerning phenomenon faced by aquatic ecosystems in the changing environments, and the microbiome plays an irreplaceable role in material circulation and food web construction. Insight into the influence of brownification on microbial communities is crucial from an ecological standpoint. In this study, we simulated brownification using a the mesocosm system and explored the relationship between the characteristics of microbial communities and brownification using excitation-emission matrix (EEM) fluorescence spectroscopy and ultraviolet (UV) spectroscopy combined with high-throughput amplicon sequencing techniques. The results showed that brownification reduced the richness of the microbial community and selectively promoted the growth of nitrogen-cycling microorganisms, including hgcI_clade, Microbacteriaceae, and Limnohabitans. Brownification affected microbial communities by altering the carbon source composition and underwater spectrum intensity; UV, blue, violet, and cyan light were significantly (p < 0.05) correlated with microbial community richness, and random forest analysis revealed that UV, C1 (microbial humic-like), and C3 (terrestrial humic-like) were the major factors significantly influencing microbiome variation. We found that brownification affected microorganisms in shallow lakes, especially nitrogen cycling microorganisms, and propose that controlling terrestrial material export is an effective strategy for managing freshwater brownification.


Assuntos
Ecossistema , Raios Ultravioleta , Lagos/química , Carbono , Nitrogênio
9.
Environ Res ; 214(Pt 3): 114065, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35964666

RESUMO

The present work demonstrates a simple one-step pyrolysis method for the synthesis of a catalytic sludge-based carbon (SBC) biochar containing Fe and Mn from dehydrated sludge with added KMnO4 and Fe(II). The electrocatalytic degradation of triclosan (TCS) in water was evaluated using an Fe/Mn-SBC cathode to promote a heterogeneous Fenton-like reaction. The catalyst generated at 500 °C exhibited an abundant porous structure and a relatively high surface area, and produced an electrode with better conductivity and electron diffusion. The presence of metal oxides changed the surface structure defects of this biochar and enhanced its catalytic performance while increasing the electrochemically active surface area by 72.68 mF/cm2 compared with plain SBC. TCS was degraded (91.3%) within 180 min by oxygen species generated in situ on an Fe/Mn-SBC cathode because the activation energy for oxygen reduction was lowered by 4.62 kJ/mol. The degradation of TCS followed pseudo first-order kinetics and was controlled by TCS diffusion and interfacial chemical reactions between adsorbed TCS and the electrode. Possible TCS degradation pathways were devised based on the main intermediates, and 1O2 was found to be more important than •OH radicals. Through toxicity test and prediction, the toxicity of degradation was gradually reduced. This study demonstrates a simple and ecofriendly method for the electrocatalytic degradation of organic pollutants.


Assuntos
Triclosan , Poluentes Químicos da Água , Carbono , Catálise , Peróxido de Hidrogênio/química , Oxigênio , Esgotos/química , Poluentes Químicos da Água/análise
10.
Chemosphere ; 307(Pt 1): 135666, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35820482

RESUMO

The Z-scheme heterojunction has received widespread attention due to it can effectively improve the photocatalytic activity of photocatalytic materials. In this paper, a p-p Z-scheme hererojunction composed of bismuth oxybromide and oxygen-rich bismuth oxybromide was synthesized via facile one-step solvothermal method. Based on the characterization results, we demonstrated that the BiOBr/Bi12O17Br2 Z-scheme heterojunction was synthesized by intimate interface contact between BiOBr and Bi12O17Br2 p-type semiconductors. This endowed the heterojunction composite with excellent photogenerated carrier transfer ability and photogenerated electron-hole separation performance compared with pure BiOBr and Bi12O17Br2 materials, which were proven by photoelectrochemical measurement, photoluminescence spectra. The maximum photocurrent of BiOBr/Bi12O17Br2 (≈0.32 µA) is approximately 3 times that of the original BiOBr (≈0.08 µA ) when light is irradiated. In addition, the BiOBr/Bi12O17Br2 p-p Z-scheme composite photocatalyst had good photocatalytic activity for sulfamethoxazole, with ·O2- free radicals as the main active species. It could photodegrade 99% sulfamethoxazole under light irradiation at 365 nm, and its degradation rate was approximately 13 times that of BiOBr and 1.5 times that of Bi12O17Br2 materials. Notably, BiOBr/Bi12O17Br2 exhibited an excellent performance after 4 consecutive runs. Besides, the possible degradation pathway of sulfamethoxazole was proposed. This work has reference significance for the construction of p-p Z-scheme heterojunctions and the treatment of environmental contaminants.


Assuntos
Bismuto , Sulfametoxazol , Bismuto/química , Catálise , Oxigênio
11.
Chemosphere ; 304: 135258, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35679983

RESUMO

In this study, an efficient and stable NiO/CeO2/MnO2-modified nitrogen-doped ordered mesoporous carbon (NOMC) particle electrode was developed, in which the metal oxides were mosaicked within the pore channels by one-pot skeleton hybridization, and the comodification of NiO/CeO2/MnO2/N was found to improve the electrocatalytic activity and stability of the particle electrode. The improved stability of the ordered mesoporous carbon towards pore collapse was applied to the degradation of simulated high-salt phenol wastewater by an electrocatalytic ozonation process using simple binder pelletization. The modified ordered mesoporous carbon shows a specific surface area of 269.7 m2 g-1 and a pore size of 3.17 nm, and SEM and TEM were used to show that the mesoporous structure is well maintained and the metal nanoparticles are well dispersed. The electrochemically active area of the Ni2%/Ce0.5%/Mn2.5%-NOMC particle electrode reaches 224.65 mF cm-2, which indicates that NiO improves the capacitance of the ordered mesoporous carbon and accelerates the electron transfer efficiency. Encouragingly, the phenol removal efficiency is found to reach up to 93.0% for 60 min over a wide range of pH values, with an initial phenol concentration of 150 mg L-1, low current (0.03 A) and fast reaction rate (0.0895 min-1), and the presence of CeO2 ameliorates the low activity of the particle electrode under acidic conditions. These results indicate that the presence of pyridine-N and ß-MnO2 effectively mitigates carbon corrosion and improves electrode stability, as the accumulation of large amounts of ·OH at 20 min and the maintenance of a degradation efficiency of more than 90% after eight cycles provides a viable solution for the widespread practical application of ordered mesoporous carbon particle electrodes.


Assuntos
Carbono , Ozônio , Carbono/química , Eletrodos , Compostos de Manganês , Nitrogênio/química , Óxidos , Fenol , Cloreto de Sódio , Águas Residuárias
12.
Chemosphere ; 303(Pt 1): 134992, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35597460

RESUMO

Electrocatalysis is a promising and environmentally friendly technology for the removal of refractory organics. Diatomic catalysts with an increased number of active sites have emerged with further expansion of the field of atomic catalysts. Here, a metal diatomic FeNi supported graphene (FeNi/N-rGO) catalyst is successfully synthesized. The atomically dispersed Fe and Ni species on graphene is verified by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure spectroscopy. The pollutant degradation efficiencies for the cathode and anode are found to reach 97.6% and 95.8%, respectively, within 90 min in the diatomic catalytic system. According to DFT theoretical calculations, FeNi diatomic catalysts have a lower free energy (ΔG = -0.2 eV), and the higher adsorption energy for the active substance H* is -0.412 eV. This work presents a method for the preparation of high-performance diatomic catalysts and promotes their application in the electrochemical degradation of chlorinated organic pollutants.

13.
Chemosphere ; 301: 134704, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35487353

RESUMO

In this work, a novel catalytic cathode of polyethyleneimine (PEI)-Sn/Cu foam with dendritic structure was prepared by electrodeposition and impregnation. It was used in the electrocatalytic reduction of CO2 to HCOOH, and its performance in this process was evaluated. At -0.97 V vs. RHE, the faradaic efficiency and current density reached 92.3% and 57.1 mA cm-2, respectively, in a 0.5 M KHCO3 electrolyte. The HCOOH production rate reached 890.4 µmol h-1 cm-2, which exceeds those for most reported Sn catalysts. Density functional theory calculations showed that use of Sn/Cu foam is more conducive to HCOOH formation than use of Cu or Sn alone, and *OCHO is the main intermediate in HCOOH formation. The results of OH- adsorption experiments confirmed that the introduction of PEI enhanced the catalytic capacity of the Sn/Cu foam, stabilized CO2·- intermediates, and promoted HCOOH generation. These results will provide an attractive strategy for developing efficient catalysts with excellent activities and stabilities for CO2 electroreduction.


Assuntos
Dióxido de Carbono , Polietilenoimina , Aerossóis , Dióxido de Carbono/química , Catálise , Eletrodos , Galvanoplastia
14.
J Hazard Mater ; 433: 128744, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35390618

RESUMO

Research on the stepwise hydrogenation dechlorination of chlorinated alkenes forms an important basis for eliminating toxic intermediate incomplete dechlorination products. The low-cost Fe-Ni/rGO/Ni foam cathode both supplied electrons and exhibited hydrogen conversion activity, and it was an excellent tool for the study of stepwise dechlorination. Electrochemical reduction experiments were carried out on homologous chlorinated alkenes. The conditions affecting the dechlorination efficiency and the repeatability of the catalytic electrode were analyzed. The trichloroethylene (TCE) removal rates were all above 78.0% over 8 cycles. The maximum EHDC efficiency was as high as 86.1%, and the faradaic efficiency was over 78.8%. Electrochemical methods combined with the calculation of the electron transfer number are proposed to verify the good hydrogenation ability of the electrode and the stepwise reduction ability at proper voltages. The stepwise dechlorination electroreduction characteristics of chlorinated alkenes were explained. The C-Cl bond dissociation enthalpies of chlorinated alkenes were calculated by density functional theory (DFT), and the 4-Cl and 5-Cl of TCE were expected to be removed first. The stepwise cleavage of chlorinated alkenes on Fe-Ni/rGO/Ni foam during dichlorination provided a reference for controlling the reduction products of chlorinated alkenes and preventing the pollution caused by toxic intermediate products formed during incomplete dechlorination.


Assuntos
Elétrons , Tricloroetileno , Alcenos , Eletrodos , Grafite , Tricloroetileno/química
15.
Chemosphere ; 292: 133443, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34973257

RESUMO

In situ injection of nanoscale zero-valent iron (nZVI) slurry is a promising method to treat chlorinated solvents represented by trichloroethylene (TCE) in groundwater. In this study, the effects of sulfidation and emulsification treatment on the performance of nZVI reductive dechlorination of TCE under enhancement by an external electric field were evaluated. The hydrophobic oil film on the surface of sulfidized and emulsified zero-valent iron (S-EZVI) can sequestrate more than one-fifth of the unreacted TCE in the early stage of the experiment (at 5 min). The FeS layer formed on the surface of S-EZVI can facilitate the electron-transfer process and reduce the degree of corrosion of Fe0 with water by 94.0%. Electric-field-enhanced S-EZVI technology can remove more than 93.1% of TCE in the pH range 6.0-9.0, and the performances in overly acid and overly alkali environments both improved. Under the optimal conditions, the TCE removal rate and reaction constant of the applied electric field group reached 96.7% and 1.6 × 10-2 L g-1 min-1, respectively, which were much higher than those of the group without an electric field (53.2% and 3.3 × 10-3 L g-1 min-1) owing to rapid concurrent hydrogenolysis of dichloroethenes and vinyl chloride, or another transformation pathway, such as direct oxidation by the anode. Thereby, this method avoids accumulation of chlorinated intermediates, especially toxic vinyl chloride. This work shows that combination technology has many characteristics that are favorable for field application, and it is expected to provide a new reference and have application value for development of in situ efficient and thorough treatment of TCE-contaminated groundwater.


Assuntos
Água Subterrânea , Nanopartículas , Tricloroetileno , Poluentes Químicos da Água , Ferro
16.
Chemosphere ; 286(Pt 1): 131558, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34293564

RESUMO

Visible light induced photocatalysis converted solar energy to chemical energy in the form of hydrogen. g-C3N4 modified by thermal oxidation etching, doped S, and nonprecious metal cocatalyst CoS2 (CoS2@SCN) were used for photocatalytic hydrogen production. And then the charge transfer behavior and mechanism of various alcohol sacrificial agents on hydrogen evolution was analyzed by optical characterization, impedance analysis, Mott-Schottky, and photocurrent tests. The relationship between the structure and catalytic performance was also explored using characterization methods. The results showed that CoS2 significantly improved the light absorption of g-C3N4, and carrier migration and separation. And when the sacrificial agent was triethanolamine, the nanocomposite CoS2@SCN exhibited best catalytic performance with the highest hydrogen activity of 223.6 µmol g-1 h-1, the minimum volume in-phase charge transfer resistance with 55.19 Ω and the maximum photocurrent and photocurrent density with 5.5 µA cm-2 and 0.63 mA cm-2. The more negatively charged surface of organic alcohols were, the easier they were to react with holes, thus enhanced charge transfer and hydrogen production efficiency. This report provides guidance for the selection of hydrogen producing sacrificial agents and preparation of highly charge-efficient catalysts. And it also provides a theoretical basis for hydrogen production from wastewater and environmental remediation.


Assuntos
Hidrogênio , Nanoestruturas , Álcoois , Catálise , Luz
17.
J Hazard Mater ; 427: 127866, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34857401

RESUMO

A novel Bi@BiOx(OH)y-modified oxidized g-C3N4 photocatalyst was successfully prepared via wet chemical reduction under alkaline conditions for the tetracycline hydrochloride removal. The prepared materials were characterized comprehensively and fully. Sufficient structural representation analyses confirmed the successful loading of Bi in the form of Bi@BiOx(OH)y complex beads. Based on basic photocatalytic studies, 10% (mass percentage) was found to be the best metal Bi loading. DRS, PL, transient photocurrent and EIS have explored the improvement of the photochemical properties of materials by loading Bi@BiOx(OH)y groups, particularly the improvement of photocatalytic properties by the SPR effect and electron traps. 10%Bi-OxCN exhibited the most suitable particle size of nonagglomerated Bi-metal groups, the largest specific surface area (43.53 m2 g-1), the most adsorption sites and the most significant photocurrent (8.694 × 10-2 mA cm-2) (7.78 times that of OxCN). This indicated that 10%Bi-OxCN had good adsorption capacity and excellent light response capability. In addition, 10%Bi-OxCN showed the best tetracycline hydrochloride removal efficiency (96.0%), with ∙O2- as the main active substance and 1O2 as the second most important substance made of ∙O2- and h+. The excellent photocatalytic effect and good reusability were fundamentally dependent on the modification of OxCN by Bi@BiOx(OH)y groups to produce a large number of active substances (including the separation efficiency of electron-hole pairs and the generation efficiency of ∙O2- and 1O2). These advantages are all related to the high specific surface area, a large number of active sites, narrow bandgap width, Bi-SPR effect, and BiOx(OH)y electron trap caused by successful loading of Bi groups.


Assuntos
Oxigênio , Tetraciclina , Catálise , Elétrons , Luz
18.
Chemosphere ; 281: 130825, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34000657

RESUMO

Visible-light-driven photoelectrocatalytic (PEC) oxidation has been explored extensively to develop highly active materials. Herein, a visible-light-active p-Co3O4 and n-g-C3N4 heterojunction (CoOx/CN) photoanode, constructed by simple one-pot calcination, was shown to remove clofibric acid (CA) from water through a PEC process. Compared with pristine g-C3N4, the optimal photoanode (15%-CoOx/CN) exhibited stable and effective PEC performance and CA degradation performance, a 100-fold enhancement in photocurrent density, and around 1.5-fold decreased efficiency over 6 h. The p-n heterojunctions were shown to increased the charge density and conductivity of g-C3N4 for rapid charge transfer. Furthermore, interface contact broadened the visible light absorption and accelerated charge carrier transfer. Notably, the catalysts established p-n heterojunctions, which hindered the bulk recombination of photoinduced carriers and improved the charge separation efficiency. The CoOx/CN photoanodes showed a pair of redox peaks at a potential of 0.3 V vs. Ag/AgCl, indicating good Co3O4 redox behavior under alkaline conditions. The 15%-CoOx/CN photoanode displayed excellent PEC performance of up to 0.16 mA cm-2 in 0.1 M KOH solution at 1.23 V vs. RHE (reversible hydrogen electrode) and long-term stability for up to 12 h. The CoOx/CN photoanodes maintained excellent PEC activities for CA removal, even under acidic and alkaline conditions conditions (pH 3-10). Probable degradation pathway of CA was proposed according to the main degradation intermediates. This study shows that the synergistic effect of p-n heterojunctions in photoelectrodes provides a new approach to the rational application of new photoanode candidates and PEC performance optimization.


Assuntos
Ácido Clofíbrico , Nanocompostos , Catálise , Eletrodos , Luz
19.
Chemosphere ; 280: 130748, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33975243

RESUMO

A low-cost, efficient and environmentally friendly hardness ion selective electro-adsorption system for high-hardness industrial circulating cooling water reuse was constructed to simultaneously realize a high salt removal rate and hardness ion (Ca2+ and Mg2+) selection. Multiply modified graphite carbon felt (GCF) materials for both negative and positive electrodes were proposed simply and economically, and an electro-adsorption system for hardness control was assembled. The multiple modified GCF (GCFM) materials were characterized by SEM, BET and FT-IR and the electrochemical performance was tested by CV and EIS; surface properties were studied by Zeta potential; the hardness ion removal selectivity and operational stability of the electro-adsorption system were tested. Hydrophilic functional groups were introduced in GCFM electrode, GCFM exhibited a large microporosity and demonstrated stable electrochemical performance in aqueous with a specific capacitance. The hardness ion selective electro-adsorption system achieved an adsorption capacity of 58.05 mg/g per circle for calcium ions and 31.03 mg/g for magnesium ions, indicating the superior hardness ion selectivity. In the circulating cooling water at the electro-adsorption stage, the ion removal performance was over 42.1% and maintain in good stability, GCFM electrode showed excellent deionization performance and demonstrated the application potential of hardness ion selective electro-adsorption system.


Assuntos
Purificação da Água , Adsorção , Eletrodos , Dureza , Espectroscopia de Infravermelho com Transformada de Fourier , Água
20.
J Hazard Mater ; 412: 125162, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33517063

RESUMO

Heterogeneous electron-Fenton processes have been regarded as promising, environmentally friendly techniques for the removal of refractory organics. A new strategy has been brought forward for an electron-Fenton-like process with in situ H2O2 production, but regarding the catalysts, their geometric stability, H2O2 selectivity, and applicability under high pH values still need to be improved. Herein, bifunctional catalysts were proposed for a heterogeneous Fenton-like reaction by introducing Fe atoms into defect-enriched graphene sheets (Fe/N-DG). The structural and compositional results suggested that the excellent dispersing stability of Fe atoms is mainly attributed to the abundant pyridinic-N sites. Optimized Fe1/N-DG exhibited superior mass activity (5.28 A mgFe-1 at 0.6 V vs. RHE) and H2O2 selectivity (86%) under the synergistic effects of Fe‒N and Fe‒O sites. The Fe/N-DG catalysts maintained superior activities for chloramphenicol removal, even under extreme pH conditions (pH≤4 or pH≥10). Of these catalysts, Fe1/N-DG with a predominant Fe-N structure exhibited the best catalytic performance, achieving the complete removal of chloramphenicol within 180 min under alkaline conditions. The possible mechanism for chloramphenicol removal under alkaline conditions was proposed, along with those for the production and activation of H2O2. This study gives new insights into atomic Fe-based catalysts exhibiting excellent selectivity and stability for antibiotic wastewater treatment.


Assuntos
Peróxido de Hidrogênio , Purificação da Água , Catálise , Cloranfenicol , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...