Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Ultrason Sonochem ; 100: 106624, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804558

RESUMO

Metal-organic frameworks (MOFs) are a significant class of porous, crystalline materials composed of metal ions (clusters) and organic ligands. The potential use of copper MOF (Cu-BTC) for the sonophotocatalytic degradation of Tetracycline (TC) antibiotic was investigated in this study. To enhance its catalytic efficiency, S-scheme heterojunction was created by combining Cu-BTC with Zinc tungstate (ZnWO4), employing an ultrasound-assisted hydrothermal method. The results demonstrated that the Cu-BTC/ZnWO4 heterojunction exhibited complete removal of TC within 60 min under simultaneous irradiation of visible light and ultrasound. Interestingly, the sonophotocatalytic degradation of TC using the Cu-BTC/ZnWO4 heterojunction showed superior efficiency (with a synergy index of ∼0.70) compared to individual sonocatalytic and photocatalytic degradation processes using the same heterojunction. This enhancement in sonophotocatalytic activity can be attributed to the formation of an S-scheme heterojunction between Cu-BTC and ZnWO4. Within this heterojunction, electrons migrated from Cu-BTC to ZnWO4, facilitated by the interface between the two materials. Under visible light irradiation, the built-in electric field, band edge bending, and coulomb interaction synergistically inhibited the recombination of electron-hole pairs. Consequently, the accumulated electrons in Cu-BTC and holes in ZnWO4 actively participated in the redox reactions, generating free radicals that effectively attacked the TC molecules. This study offers valuable perspectives on the application of a newly developed S-scheme heterojunction photocatalyst, demonstrating its effectiveness in efficiently eliminating diverse recalcitrant pollutants via sonophotocatalytic degradation.

3.
ACS Omega ; 8(23): 20332-20341, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37323379

RESUMO

The integration of cobalt borate OER catalysts with electrodeposited BiVO4-based photoanodes through a simple drop casting technique was shown to provide an improvement of the photoelectrochemical performance of electrodes under simulated solar light. Catalysts were obtained by chemical precipitation mediated by NaBH4 at room temperature. Scanning electron microscopy (SEM) investigation of precipitates showed a hierarchical structure with globular features covered in nanometric thin sheets providing a large active area, whereas X-ray diffraction (XRD) and Raman spectroscopy highlighted their amorphous structure. The photoelectrochemical behavior of samples was investigated by linear scan voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) techniques. The amount of particles loaded onto BiVO4 absorbers was optimized by variation of the drop cast volume. The enhancement of photocurrent generation by Co-Bi-decorated electrodes with respect to bare BiVO4 was observed with an increase from 1.83 to 3.65 mA/cm2 at 1.23 V vs RHE under AM 1.5 simulated solar light, corresponding to a charge transfer efficiency of 84.6%. The calculated maximum applied bias photon-to-current efficiency (ABPE) value for optimized samples was 1.5% at 0.5 V applied bias. Under constant illumination at 1.23 V vs RHE, a depletion of photoanode performances was observed within an hour, likely due to the detachment of the catalyst from the electrode surface.

4.
Nanomaterials (Basel) ; 13(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36839080

RESUMO

Ternary PANI@Bi2O3-BiOCl nanocomposites were successfully synthesized during the oxidative polymerization of aniline monomer in the presence of Bi2O3. PANI@Bi2O3-BiOCl nanocomposites were characterized by several analytical techniques, including X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), N2 physisorption, UV-Vis Diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). The effective PANI-semiconductor interaction promotes the fast separation and transfer of photogenerated electrons and holes, enhancing the photocatalytic efficiency of the materials towards methylene blue (MB) degradation under solar light irradiation. The best results were obtained by 0.5%PANI@Bi2O3-BiOCl, leading to 80% MB degradation in 2 h, four times higher than pristine Bi2O3-BiOCl. Moreover, 0.5%PANI@Bi2O3-BiOCl maintained stable photocatalytic performances for four cycles without significant activity loss. Various scavengers (isopropyl alcohol, formic acid, and benzoquinone) were used to identify the active species by trapping holes and radicals generated during the photocatalytic degradation process. Finally, a probable photocatalytic mechanism of PANI@Bi2O3-BiOCl photocatalyst was suggested.

5.
Materials (Basel) ; 16(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36770310

RESUMO

Finding innovative and highly performing approaches for NOx degradation represents a key challenge to enhance the air quality of our environment. In this study, the high efficiency of PANI/TiO2 nanostructures in the NO2 abatement both in the dark and under light irradiation is demonstrated for the first time. Heterostructures were synthesized by a "green" method and their composition, structure, morphology and oxidation state were investigated by a combination of characterization techniques. The results show that the unique PANI structure promotes two mechanisms for the NO2 abatement in the dark (adsorption on the polymeric chains and chemical reduction to NO), whereas the photocatalytic behavior prevails under light irradiation, leading to the complete NOx degradation. The best-performing materials were subjected to recycling tests, thereby showing high stability without any significant activity loss. Overall, the presented material can represent an innovative and efficient night-and-day solution for NOx abatement.

6.
Polymers (Basel) ; 14(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36433024

RESUMO

In the last decades, sorbent materials characterized by low selectivity have been developed for the removal of pollutants (in particular dyes) from wastewater. However, following the circular economy perspective, the possibility to selectively adsorb and desorb dyes molecules today represents an unavoidable challenge deserving to be faced. Herein, we propose a sequential treatment based on the use of PANI-modified loofah (P-LS) and loofah sponge (LS) to selectively adsorb cationic (rhodamine, RHB, and methylene blue, MB) and anionic (methyl orange, MO) dyes mixed in aqueous solution by tuning the adsorption pH (100% MO removal by P-LS and 100% and 70% abatement of MB and RHB, respectively, by LS). The system maintained high sorption activity for five consecutive cycles. A simple and effective regeneration procedure for the spent adsorbents permits the recovery of the initial sorption capability of the materials (81% for MO, ca. 85% for both RHB and MB, respectively) and, at the same time, the selective release of most of the adsorbed cationic dyes (50% of the adsorbed MB and 50% of the adsorbed RHB), although the procedure failed regarding the release of the anionic component. This approach paved the way to overcome the traditional procedure based on an indiscriminate removal/degradation of pollutants, making the industrial wastewater a potential source of useful chemicals.

7.
J Hazard Mater ; 421: 126792, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34396965

RESUMO

Over more than three decades, the field of engineering of photocatalytic materials with unique properties and enhanced performance has received a huge attention. In this regard, different classes of materials were fabricated and used for different photocatalytic applications. Among these materials, recently multifunctional XTiO3 perovskites have drawn outstanding interest towards environmental remediation and energy conversion thanks to their unique structural, optical, physiochemical, electrical and thermal characteristics. XTiO3 perovskites are able to initiate different surface catalytic reactions. Under ultrasonic vibration or heating, XTiO3 perovskites can induce piezo-catalytic reactions due to the titling of their conduction and valence bands, resulting in the formation of separated charge carriers in the medium. In addition, under light irradiation, XTiO3 perovskites are considered as a new class of photocatalysts for environmental and energy related applications. Herein, we addressed the recent advances on variously synthesized, doped and formulated XTiO3 perovskite-type oxides showing piezo- and/or photocatalytic exploitation in environmental remediation and energy conversion. The control of structural crystallite size and phase, conductivity, morphology, oxygen vacancy control, doping agents and ratio has a significant role on the photocatalytic and piezocatalytic activities. The different piezo or/and photocatalytic processes mechanistic pathways towards varying applications were discussed. The current challenges facing these materials and future trends were addressed at the end of the review.

8.
Chemosphere ; 286(Pt 3): 131941, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426283

RESUMO

Recently, the engineering of alternative adsorbents with better functional and sorbing ability towards the purification of wastewaters has received much attention from the scientific community. Currently polymers, in particular, are regarded as attractive soft materials in the field of environmental remediation due to their several unique properties. In this regard, the synthesis method is key point to fabricate polymer-based adsorbent with targeted characteristics. In the present work, four polyaniline (PANIs) samples were synthesized by two alternative chemical approaches, a traditional one and an eco-friendly one, and two different dopants were used, HCl and H2SO4, respectively. All PANIs were characterized for their thermal, optical, morphological, and structural properties and their capability to remove simultaneously dyes and heavy metals from water have been investigated. It was deduced that the sorption ability is dependent on the as-synthesized PANI using different procedures and dopants. All the PANIs from traditional method showed high levels of pollutants removal (from 89 to 97%). Even though the materials obtained from the green way are overall less active, H2SO4-doped corresponding polymer showed high sorption capability (75-97%). Finally, the most performing PANIs were selected for recycling tests exhibiting high sorption efficiency retention up to four runs without any regeneration treatment. Most important, the cycling tests were stopped well before the sample sorption limit could be reached.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Adsorção , Compostos de Anilina , Corantes , Água , Poluentes Químicos da Água/análise
9.
Chem Rev ; 122(3): 3219-3258, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34818504

RESUMO

Intensification of ultrasonic processes for diversified applications, including environmental remediation, extractions, food processes, and synthesis of materials, has received attention from the scientific community and industry. The mechanistic pathways involved in intensification of ultrasonic processes that include the ultrasonic generation of cavitation bubbles, radical formation upon their collapse, and the possibility of fine-tuning operating parameters for specific applications are all well documented in the literature. However, the scale-up of ultrasonic processes with large-scale sonochemical reactors for industrial applications remains a challenge. In this context, this review provides a complete overview of the current understanding of the role of operating parameters and reactor configuration on the sonochemical processes. Experimental and theoretical techniques to characterize the intensity and distribution of cavitation activity within sonoreactors are compared. Classes of laboratory and large-scale sonoreactors are reviewed, highlighting recent advances in batch and flow-through reactors. Finally, examples of large-scale sonoprocessing applications have been reviewed, discussing the major scale-up and sustainability challenges.

10.
Nanomaterials (Basel) ; 11(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34835840

RESUMO

In the present study, the development of innovative polyurethane-polyaniline/TiO2 modified floating materials applied in the sorption and photodegradation of rhodamine B from water matrix under solar light irradiation is reported. All the materials were fabricated with inexpensive and easy approaches and were properly characterized. The effect of the kind of polyaniline (PANI) dopant on the materials' behavior was investigated, as well as the role of the conducting polymer in the pollutant abatement on the basis of its physico-chemical characteristics. Rhodamine B is removed by adsorption and/or photodegradation processes depending on the type of doping agent used for PANI protonation. The best materials were subjected to recycle tests in order to demonstrate their stability under the reaction conditions. The main transformation products formed during the photodegradation process were identified by ultraperformance liquid chromatography-mass spectrometry (UPLC/MS). The results demonstrated that photoactive floating PANI/TiO2 composites are useful alternatives to common powder photocatalysts for the degradation of cationic dyes.

11.
Nanotechnology ; 32(47)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34388747

RESUMO

In recent years, nanoparticles have come under close scrutiny for their possible health and environmental issues, making them less attractive for photocatalytic applications in air or water purification. Replacing free nano-powders with active and stable films is thus a fundamental step towards developing effective photocatalytic devices. Aluminum represents a cheap and technologically-relevant substrate, but its photocatalytic applications have been hampered by adhesion issues and metal ion diffusion within the photocatalytic layer. In this work, the use of silica interlayers is investigated as a strategy to promote adhesion, efficiency and reusability of TiO2films deposited on aluminum plates. Films were prepared from stable titania sols to avoid the use of nano-powders. Aluminum substrates with different surface morphology were investigated and the role of the silica interlayer thickness was studied. Films were extensively characterized, studying their structure, morphology, optical properties, adhesion and hardness. Self-cleaning properties were studied with respect to their superhydrophilicity and ability to resist fouling via alkylsilanes. Photocatalytic degradation tests were carried out using both volatile organic compounds and NOx, also in recycle tests. The presence of the silica interlayer proved crucial to promote the film robustness and photocatalytic activity. The substrate morphology determined the optimal interlayer thickness, especially in terms of the film reusability.

12.
Ultrason Sonochem ; 75: 105615, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34111723

RESUMO

The degradation of diclofenac has been realized for the first time by a piezo-enhanced sonophotocatalytic approach based on ZnO. The sonophotocatalytic degradation showed a slight enhancement in the degradation of the parent compound, whereas strong synergistic effects were observed for the mineralization process when suitable ZnO morphologies are used, reaching 70% of complete degradation of 25 ppm diclofenac using 0.1 g/L ZnO in 360 min. Tests in a complex water matrix show enhanced diclofenac removal, outperforming a TiO2 benchmark photocatalyst. These promising experimental results promote this process as a good alternative to traditional degradation approaches for remediation of real water matrices.

13.
Chemosphere ; 281: 130839, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34000659

RESUMO

A massive amount of research has been done over the last three decades to develop photoactive materials which could be suitable for real-world use in water remediation sector. Water-floating photocatalysts could be one of the best options due to their technological characteristics in terms of efficiency and reasonability including a high oxygenation of the photocatalyst surface, a fully sunlight irradiation, easy recovery and reuse. In the present study, aerogel water-floating based materials were fabricated using poly(vinyl alcohol) and polyvinylidene fluoride as a polymer platform, and loaded with different semiconductors such as g-C3N4, MoO3, Bi2O3, Fe2O3 or WO3. The photocatalytic efficiencies of aerogel floating materials and the suspension of above-mentioned semiconductors were compared evaluating the photoreduction of Cr(VI) under visible light (λ > 420 nm). The results showed that Fe2O3 suspension was the most efficient but the slowest in floating system. On the contrary, g-C3N4 exhibited a good performance in suspension system, and on top of that it was very effective in floating system, wherein it ensures a total reduction of 10 ppm-Cr(VI) to Cr(III) within 20 min.


Assuntos
Luz , Óxidos , Catálise , Cromo , Semicondutores
14.
Ultrason Sonochem ; 73: 105544, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33819869

RESUMO

The chemical effects of the acoustic cavitation generated by ultrasound translates into the production of highly reactive radicals. Acoustic cavitation is widely explored in aqueous solutions but it remains poorly studied in organic liquids and in particular in liquid/solid media. However, several heterogeneous catalysis reactions take place in organic solvents. Thus, we sonicated trimethylene glycol and propylene glycol in the presence of silica particles (SiO2) of different sizes (5-15 nm, 0.2-0.3 µm, 12-26 µm) and amounts (0.5 wt% and 3 wt%) at an ultrasound frequency of 20 kHz to quantify the radicals generated. The spin trap 5,5-dimethyl-1-pyrrolin-N-oxide (DMPO) was used to trap the generated radicals for study by electron paramagnetic resonance (EPR) spectroscopy. We identified the trapped radical as the hydroxyalkyl radical adduct of DMPO, and we quantified it using stable radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a quantitation standard. The concentration of DMPO spin adducts in solutions containing silica size 12-26 µm was higher than the solution without particles. The presence of these particles increased the concentration of the acoustically generated radicals by a factor of 1.5 (29 µM for 0.5 wt% of SiO2 size 12-26 µm vs 19 µM for 0 wt%, after 60 min of sonication). Ultrasound produced fewest radicals in solutions with the smallest particles; the concentration of radical adducts was highest for SiO2 particle size 12-26 µm at 0.5 wt% loading, reaching 29 µM after 60 min sonication. Ultrasound power of 50.6 W produced more radicals than 24.7 W (23 µM and 18 µM, respectively, at 30 min sonication). Increased temperature during sonication generated more radical adducts in the medium (26 µM at 75 °C and 18 µM at 61 °C after 30 min sonication). Acoustic cavitation, in the presence of silica, increased the production of radical species in the studied organic medium.

15.
RSC Adv ; 11(44): 27309-27321, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35480667

RESUMO

In this study, an easily magnetically recoverable polydopamine (PDA)-modified hydroxyapatite (HAp)/Fe3O4 magnetic composite (HAp/Fe3O4/PDA) was suitably synthesized to exploit its adsorption capacity to remove Zn2+ from aqueous solution, and its structural properties were thoroughly examined using different analytical techniques. The effect of multiple parameters like pH, ultrasonic power, ultrasonic time, adsorbent dose, and initial Zn2+ concentration on the adsorption efficiency was assessed using RSM-CCD. According to the acquired results, by increasing the adsorbent quantity, ultrasonic power, ultrasonic time, and pH, the Zn2+ adsorption efficiency increased and the interaction between the variables of ultrasonic power/Zn2+ concentration, pH/Zn2+ concentration, pH/absorbent dose, and ultrasonic time/adsorbent dose has a vital role in the Zn2+ adsorption. The uptake process of Zn2+ onto PDA/HAp/Fe3O4 followed Freundlich and pseudo-second order kinetic models. The maximum capacity of Zn2+ adsorption (q m) obtained by PDA/HAp/Fe3O4, HAp/Fe3O4, and HAp was determined as 46.37 mg g-1, 40.07 mg g-1, and 37.57 mg g-1, respectively. Due to its good performance and recoverability (ten times), the HAp/Fe3O4/PDA magnetic composite can be proposed as a good candidate to eliminate Zn2+ ions from a water solution.

16.
Ultrason Sonochem ; 67: 105123, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32283492

RESUMO

The nonsteroidal anti-inflammatory drug sodium diclofenac (DC) is an emerging water pollutant which resists conventional wastewater treatments. Here the sonophotocatalytic degradation of DC was carried out using micrometric TiO2 (both pristine and Ag-decorated), UV-A irradiation and 20 kHz pulsed ultrasound. Sonophotocatalytic tests were compared with photolysis, sonolysis, sonophotolysis, sonocatalysis and photocatalysis data performed in the same conditions. A synergy index of over 2 was determined for tests with pristine TiO2, while values close to 1.3 were observed for Ag-TiO2. Reaction intermediates were studied by HPLC-MS, showing degradation mechanisms activated by hydroxyl radicals. Similar pathways were identified for photocatalytic and sonophotocatalytic tests, although the latter led to more oxidized compounds. Different reactor configurations (static and dynamic set ups) were studied. Sequential and simultaneous application of UV light and ultrasound led to similar performance. The role of water matrix was investigated using ultrapure and drinking water, showing marked detrimental effects of electrolytes on the DC degradation. Overall, the combined treatment proved more efficient than photocatalysis alone especially in demanding working conditions, like in drinking water matrices.


Assuntos
Diclofenaco/química , Água Potável/química , Processos Fotoquímicos , Sonicação , Titânio/química , Catálise , Cinética , Tamanho da Partícula , Poluentes Químicos da Água/química
17.
Ultrason Sonochem ; 66: 105119, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32252008

RESUMO

The synthesis of ZnO photocatalysts by ultrasound-assisted technique was here investigated. Several experimental parameters including the zinc precursor (acetate, chloride, nitrate), sonication conditions (amplitude, pulse) and post-synthetic thermal treatment (up to 500 °C) were studied. Crystalline ZnO samples were obtained without thermal treatments due to the adopted reactant ratios and synthesis temperature. Sonication plays a major role on the morphological oxide features in terms of particle size and surface area, the latter showing a 20-fold increase with respect to conventional synthesis. Interestingly, 1 and 3 s sonication pulses led to morphological properties similar to continuous sonication. A thermal treatment at moderate temperatures (400-450 °C) promoted the loss of surface hydroxylation and the formation of lattice defects, while higher temperatures were detrimental for the sample morphology. The prepared ZnO was decorated with WO3 particles comparing an ultrasound-assisted technique using 1 s pulses with a conventional approach, giving rise to composites with promoted visible light absorption. Samples were tested towards the photocatalytic degradation of nitrogen oxides (500-1000 ppb) in humidified air under both UV and visible light. By carefully controlling the synthetic procedure, better performance were observed with respect to the commercial benchmark. Samples from ultrasound-assisted syntheses, also in the case of pulsed sonication, showed consistently better results than conventional references, in particular for ZnO-WO3 composites. The composite by ultrasound-assisted synthesis showed > 95% degradation in 180 min and doubled NOx degradation under visible light with respect to the conventional composite.

18.
Polymers (Basel) ; 11(10)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658775

RESUMO

Polymeric dielectrics are employed extensively in the power transmission industry, thanks to their excellent properties; however, under normal operating conditions these materials tend to degrade and fail. In this study, samples of low-density polyethylene, polypropylene, polymethyl methacrylate, and polytetrafluorethylene were subjected to corona discharges under nitrogen and air atmospheres. The discharges introduced structural modifications over the polymer surface. From a chemical perspective, the alterations are analogous among the non-fluorinated polymers (i.e., polyethylene (PE), polypropylene (PP), and polymethyl methacrylate (PMMA)). A simulation of the corona discharge allowed the identification of highly reactive species in the proximity of the surface. The results are consistent with the degradation of insulating polymers in high-voltage applications due to internal partial discharges that ultimately lead to the breakdown of the material.

19.
Environ Sci Pollut Res Int ; 26(36): 36117-36123, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31020536

RESUMO

TiO2 is employed as both photocatalytic and structural materials, leading to its applications in external coatings or in interior furnishing devices, including cement mortar, tiles, floorings, and glass supports. The authors have already demonstrated the efficiency of photoactive micro-sized TiO2 and here its industrial use is reported using the digital printing to coat porcelain grés slabs. Many advantages are immediately evident, namely rapid and precise deposition, no waste of raw materials, thus positively affecting the economy of the process. Data for the thin films deposited by digital printing were compared with those obtained for the conventional spray method. The use of metal-doped TiO2 is also reported so that the photoactivity of these materials can be exploited even under LED light. The digital inkjet printed coatings exhibited superior photocatalytic performance owing to both higher exposed surface area and greater volume of deposited anatase, as well as the greater areal distribution density of thinly and thickly coated regions. Moreover, the presence of TiO2 doped silver increased the efficiency of the materials in NOx degradation both under UVA and LED lights.


Assuntos
Poluição do Ar em Ambientes Fechados/prevenção & controle , Materiais de Construção , Nanopartículas/química , Prata/química , Titânio/química , Raios Ultravioleta , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos da radiação , Catálise , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/efeitos da radiação , Impressão Tridimensional , Propriedades de Superfície
20.
Nanomaterials (Basel) ; 8(9)2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177654

RESUMO

TiO2-based photocatalysis under visible light is an attractive way to abate air pollutants. Moreover, developing photocatalytic materials on a large-scale requires safe and low-cost precursors. Both high-performance TiO2 nanopowders and visible-light active noble metals do not match these requirements. Here, we report the design of novel Mn-decorated micrometric TiO2 particles. Pigmentary TiO2 replaced unsafe nano-TiO2 and firmly supported MnOx particles. Mn replaced noble metals such as Au or Ag, opening the way for the development of lower cost catalysts. Varying Mn loading or pH during the impregnation affected the final activity, thus giving important information to optimize the synthesis. Photocatalytic activity screening occurred on the gas-phase degradation of ethanol as a reference molecule, both under ultraviolet (UV) (6 h) and Light Emitting Diode (LED) (24 h) irradiation. Mn-doped TiO2 reached a maximum ethanol degradation of 35% under visible light after 24 h for the sample containing 20% of Mn. Also, we found that an acidic pH increased both ethanol degradation and mineralization to CO2, while an alkaline pH drastically slowed down the reaction. A strict correlation between photocatalytic results and physico-chemical characterizations of the synthesized powders were drawn.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...