Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38082185

RESUMO

Anthracyclines' cardiotoxicity involves an accelerated generation of reactive oxygen species. This oxidative damage has been found to accelerate the expression of hexose-6P-dehydrogenase (H6PD), that channels glucose-6-phosphate (G6P) through the pentose phosphate pathway (PPP) confined within the endoplasmic/sarcoplasmic reticulum (SR). To verify the role of SR-PPP in the defense mechanisms activated by doxorubicin (DXR) in cardiomyocytes, we tested the effect of this drug in H6PD knockout mice (H6PD-/-). Twenty-eight wildtype (WT) and 32 H6PD-/- mice were divided into four groups to be treated with intraperitoneal administration of saline (untreated) or DXR (8 mg/Kg once a week for 3 weeks). One week thereafter, survivors underwent imaging of 18F-deoxyglucose (FDG) uptake and were sacrificed to evaluate the levels of H6PD, glucose-6P-dehydrogenase (G6PD), G6P transporter (G6PT), and malondialdehyde. The mRNA levels of SR Ca2+-ATPase 2 (Serca2) and ryanodine receptors 2 (RyR2) were evaluated and complemented with Hematoxylin/Eosin staining and transmission electron microscopy. During the treatment period, 1/14 DXR-WT and 12/18 DXR-H6PD-/- died. At microPET, DXR-H6PD-/- survivors displayed an increase in left ventricular size (p < 0.001) coupled with a decreased urinary output, suggesting a severe hemodynamic impairment. At ex vivo analysis, H6PD-/- condition was associated with an oxidative damage independent of treatment type. DXR increased H6PD expression only in WT mice, while G6PT abundance increased in both groups, mismatching a generalized decrease of G6PD levels. Switching-off SR-PPP impaired reticular accumulation of Ca2+ decelerating Serca2 expression and upregulating RyR2 mRNA level. It thus altered mitochondrial ultrastructure eventually resulting in a cardiomyocyte loss. The recognized vulnerability of SR to the anthracycline oxidative damage is counterbalanced by an acceleration of G6P flux through a PPP confined within the reticular lumen. The interplay of SR-PPP with the intracellular Ca2+ exchanges regulators in cardiomyocytes configure the reticular PPP as a potential new target for strategies aimed to decrease anthracycline toxicity.

2.
Heart Fail Clin ; 19(1): 137-152, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36435569

RESUMO

Several microRNAs and long noncoding RNAs contribute to pulmonary arterial hypertension (PAH) pathogenesis by impairing nitric oxide production, enhancing proliferation and migration and decreasing apoptosis of smooth muscle cells, and promoting endothelial-to-mesenchymal transition in pulmonary arteries. These noncoding RNAs (ncRNAs) could serve as both biomarkers and therapeutic targets for PAH. Nonetheless, the knowledge about their role in PAH is still incomplete. Furthermore, ncRNAs may vary across species and often act differently in different tissues and organs, and technical issues currently limit the implementation of ncRNA-based technologies. Additional studies are warranted to finally bring ncRNA into the clinical arena.


Assuntos
Hipertensão Pulmonar , MicroRNAs , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/uso terapêutico , Artéria Pulmonar , Biomarcadores
3.
Cells ; 11(10)2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35626666

RESUMO

Cytoskeletal proteins provide architectural and signaling cues within cells. They are able to reorganize themselves in response to mechanical forces, converting the stimuli received into specific cellular responses. Thus, the cytoskeleton influences cell shape, proliferation, and even differentiation. In particular, the cytoskeleton affects the fate of mesenchymal stem cells (MSCs), which are highly attractive candidates for cell therapy approaches due to their capacity for self-renewal and multi-lineage differentiation. Cytochalasin B (CB), a cyto-permeable mycotoxin, is able to inhibit the formation of actin microfilaments, resulting in direct effects on cell biological properties. Here, we investigated for the first time the effects of different concentrations of CB (0.1-10 µM) on human adipose-derived stem cells (hASCs) both after 24 h (h) of CB treatment and 24 h after CB wash-out. CB influenced the metabolism, proliferation, and morphology of hASCs in a dose-dependent manner, in association with progressive disorganization of actin microfilaments. Furthermore, the removal of CB highlighted the ability of cells to restore their cytoskeletal organization. Finally, atomic force microscopy (AFM) revealed that cytoskeletal changes induced by CB modulated the viscoelastic properties of hASCs, influencing their stiffness and viscosity, thereby affecting adipogenic fate.


Assuntos
Adipócitos , Células-Tronco , Adipogenia/fisiologia , Tecido Adiposo , Citocalasina B/farmacologia , Humanos
4.
Genes (Basel) ; 11(8)2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784482

RESUMO

In humans, sexual dimorphism can manifest in many ways and it is widely studied in several knowledge fields. It is increasing the evidence that also cells differ according to sex, a correlation still little studied and poorly considered when cells are used in scientific research. Specifically, our interest is on the sex-related dimorphism on the human mesenchymal stem cells (hMSCs) transcriptome. A systematic meta-analysis of hMSC microarrays was performed by using the Transcriptome Mapper (TRAM) software. This bioinformatic tool was used to integrate and normalize datasets from multiple sources and allowed us to highlight chromosomal segments and genes differently expressed in hMSCs derived from adipose tissue (hADSCs) of male and female donors. Chromosomal segments and differentially expressed genes in male and female hADSCs resulted to be related to several processes as inflammation, adipogenic and neurogenic differentiation and cell communication. Obtained results lead us to hypothesize that the donor sex of hADSCs is a variable influencing a wide range of stem cell biologic processes. We believe that it should be considered in biologic research and stem cell therapy.


Assuntos
Tecido Adiposo/citologia , Células-Tronco Mesenquimais/metabolismo , Transcriptoma , Adipogenia/genética , Diferenciação Celular/genética , Células Cultivadas , Mapeamento Cromossômico , Biologia Computacional/métodos , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Fatores Sexuais
5.
Int J Mol Sci ; 20(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635381

RESUMO

A wide variety of peptides not only interact with the cell surface, but govern complex signaling from inside the cell. This has been referred to as an "intracrine" action, and the orchestrating molecules as "intracrines". Here, we review the intracrine action of dynorphin B, a bioactive end-product of the prodynorphin gene, on nuclear opioid receptors and nuclear protein kinase C signaling to stimulate the transcription of a gene program of cardiogenesis. The ability of intracrine dynorphin B to prime the transcription of its own coding gene in isolated nuclei is discussed as a feed-forward loop of gene expression amplification and synchronization. We describe the role of hyaluronan mixed esters of butyric and retinoic acids as synthetic intracrines, controlling prodynorphin gene expression, cardiogenesis, and cardiac repair. We also discuss the increase in prodynorphin gene transcription and intracellular dynorphin B afforded by electromagnetic fields in stem cells, as a mechanism of cardiogenic signaling and enhancement in the yield of stem cell-derived cardiomyocytes. We underline the possibility of using the diffusive features of physical energies to modulate intracrinergic systems without the needs of viral vector-mediated gene transfer technologies, and prompt the exploration of this hypothesis in the near future.


Assuntos
Diferenciação Celular/genética , Encefalinas/genética , Encefalinas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Animais , Butiratos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Peptídeos Opioides/genética , Peptídeos Opioides/metabolismo , Organogênese/genética , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/metabolismo , Tretinoína/metabolismo
6.
World J Stem Cells ; 11(6): 297-321, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31293714

RESUMO

Rhythmic oscillatory patterns sustain cellular dynamics, driving the concerted action of regulatory molecules, microtubules, and molecular motors. We describe cellular microtubules as oscillators capable of synchronization and swarming, generating mechanical and electric patterns that impact biomolecular recognition. We consider the biological relevance of seeing the inside of cells populated by a network of molecules that behave as bioelectronic circuits and chromophores. We discuss the novel perspectives disclosed by mechanobiology, bioelectromagnetism, and photobiomodulation, both in term of fundamental basic science and in light of the biomedical implication of using physical energies to govern (stem) cell fate. We focus on the feasibility of exploiting atomic force microscopy and hyperspectral imaging to detect signatures of nanomotions and electromagnetic radiation (light), respectively, generated by the stem cells across the specification of their multilineage repertoire. The chance is reported of using these signatures and the diffusive features of physical waves to direct specifically the differentiation program of stem cells in situ, where they already are resident in all the tissues of the human body. We discuss how this strategy may pave the way to a regenerative and precision medicine without the needs for (stem) cell or tissue transplantation. We describe a novel paradigm based upon boosting our inherent ability for self-healing.

7.
Int J Mol Sci ; 20(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146388

RESUMO

Stem cells undergo senescence both in vivo, contributing to the progressive decline in self-healing mechanisms, and in vitro during prolonged expansion. Here, we show that an early developmental zebrafish embryo extract (ZF1) could act as a modulator of senescence in human mesenchymal stem cells (hMSCs) isolated from both adult tissues, including adipose tissue (hASCs), bone marrow (hBM-MSCs), dental pulp (hDP-MSCs), and a perinatal tissue such as the Wharton's Jelly (hWJ-MSCs). In all the investigated hMSCs, ZF1 decreased senescence-associated ß-galactosidase (SA ß-gal) activity and enhanced the transcription of TERT, encoding the catalytic telomerase core. In addition, it was associated, only in hASCs, with a transcriptional induction of BMI1, a pleiotropic repressor of senescence. In hBM-MSCs, hDP-MSCs, and hWJ-MSCs, TERT over-expression was concomitant with a down-regulation of two repressors of TERT, TP53 (p53), and CDKN1A (p21). Furthermore, ZF1 increased the natural ability of hASCs to perform adipogenesis. These results indicate the chance of using ZF1 to modulate stem cell senescence in a source-related manner, to be potentially used as a tool to affect stem cell senescence in vitro. In addition, its anti-senescence action could also set the basis for future in vivo approaches promoting tissue rejuvenation bypassing stem cell transplantation.


Assuntos
Senescência Celular , Embrião não Mamífero/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Extratos de Tecidos/farmacologia , Animais , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Telomerase/genética , Telomerase/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra
8.
Front Biosci (Schol Ed) ; 11(1): 89-104, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30844738

RESUMO

Human adult stem cells hold promise for regenerative medicine. They are usually expanded for multiple passages in vitro to increase cell yield prior to transplantation. Unfortunately, prolonged culture leads to cell senescence, a major drawback from successful outcomes in cell therapy approaches. Here, we show that an extract from early Zebrafish embryo (ZF1) counteracted senescence progression in human adipose-derived stem cells (hASCs) along multiple culture passages (from the 5th to the 20th). Exposure to ZF1 strongly reduced the expression of senescence marker beta-galactosidase. Both stemness (NANOG, OCT4, and MYC) and anti-senescence (BMI1, and telomerase reverse transcriptase - TERT) related genes were overexpressed at specific experimental points, without recruitment of the cyclin-dependent kinase Inhibitor 2A (CDKN2A, ali-as p16). Increased telomerase activity was associatt-ed with TERT overexpression. Both osteogenic and adipogenic abilities were enhanced. In conclusion, hASCs exposure to ZF1 is a feasible tool to counteract and reverse human stem cell senescence in long-term culturing conditions.


Assuntos
Extratos Celulares/química , Senescência Celular , Embrião não Mamífero/química , Células-Tronco/citologia , Peixe-Zebra/embriologia , Adipócitos/citologia , Adipogenia , Adulto , Animais , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Humanos , Osteogênese , Transplante de Células-Tronco , Telomerase/genética , beta-Galactosidase/metabolismo
9.
Int J Med Sci ; 15(13): 1486-1501, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30443170

RESUMO

Human Mesenchymal Stem Cells (hMSCs) undergo senescence in lifespan. In most clinical trials, hMSCs experience long-term expansion ex vivo to increase cell number prior to transplantation, which unfortunately leads to cell senescence, hampering post-transplant outcomes. Hydrogen peroxide (H2O2) in vitro represents a rapid, time and cost-effective tool, commonly used as oxidative stress tantalizing the stem cell ability to cope with a hostile environment, recapitulating the onset and progression of cellular senescence. Here, H2O2 at different concentrations (ranging from 50 to 400 µM) and time exposures (1 or 2 hours - h), was used for the first time to compare the behavior of human Adipose tissue-derived Stem Cells (hASCs) and human Wharton's Jelly-derived MSCs (hWJ-MSCs), as representative of adult and perinatal tissue-derived stem cells, respectively. We showed timely different responses of hASCs and hWJ-MSCs at low and high subculture passages, concerning the cell proliferation, the cell senescence-associated ß-Galactosidase activity, the capability of these cells to undergo passages, the morphological changes and the gene expression of tumor protein p53 (TP53, alias p53) and cyclin dependent kinase inhibitor 1A (CDKN1A, alias p21) post H2O2 treatments. The comparison between the hASC and hWJ-MSC response to oxidative stress induced by H2O2 is a useful tool to assess the biological mechanisms at the basis of hMSC senescence, but it could also provide two models amenable to test in vitro putative anti-senescence modulators and develop anti-senescence strategies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células Cultivadas , Humanos , Peróxido de Hidrogênio/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Geleia de Wharton/citologia , beta-Galactosidase/metabolismo
10.
Stem Cells Int ; 2018: 7412035, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30057626

RESUMO

The human body constantly regenerates after damage due to the self-renewing and differentiating properties of its resident stem cells. To recover the damaged tissues and regenerate functional organs, scientific research in the field of regenerative medicine is firmly trying to understand the molecular mechanisms through which the regenerative potential of stem cells may be unfolded into a clinical application. The finding that some organisms are capable of regenerative processes and the study of conserved evolutionary patterns in tissue regeneration may lead to the identification of natural molecules of ancestral species capable to extend their regenerative potential to human tissues. Such a possibility has also been strongly suggested as a result of the use of physical energies, such as electromagnetic fields and mechanical vibrations in human adult stem cells. Results from scientific studies on stem cell modulation confirm the possibility to afford a chemical manipulation of stem cell fate in vitro and pave the way to the use of natural molecules, as well as electromagnetic fields and mechanical vibrations to target human stem cells in their niche inside the body, enhancing human natural ability for self-healing.

11.
Mol Med Rep ; 14(1): 474-80, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27176599

RESUMO

Metal ion release and accumulation is considered to be a factor responsible for the high failure rates of metal-on-metal (MoM) hip implants. Numerous studies have associated the presence of these ions, besides other factors, including a hypoxia­like response and changes in pH due to metal corrosion leading to the induction of the oxidative stress response. The aim of the present study was to verify whether, in patients with a MoM hip prosthesis, mRNA and protein expression of HMOX­1 was modulated by the presence of metal ions and whether patients without prostheses exhibit a different expression pattern of this enzyme. The study was conducted on 22 matched pairs of patients with and without prostheses, for a total of 44 samples. Ion dosage was determined using inductively coupled plasma mass spectrometry equipped with dynamic cell reaction. HMOX­1 gene expression was quantified by reverse transcription-quantitative polymerase chain reaction and HMOX­1 protein expression was analyzed using an enzyme-linked immunosorbent assay. The results demonstrated that although there were significant differences in the metallic ion concentrations amongst the two groups of patients, there was no correlation between circulating levels of cobalt (Co) and chromium (Cr), and HMOX­1 gene and protein expression. Additionally, there was no significant difference in the protein expression levels of HMOX­1 between the two groups. In conclusion, it was demonstrated that circulating Co and Cr ions released by articular prosthetics do not induce an increase in HMOX­1 mRNA and protein expression at least 3.5 years after the implant insertion. The present study suggests that involvement of HMOX­1 may be excluded from future studies and suggests that other antioxidant enzymes, including superoxide dismutase, glutathione peroxidase and reductase should be investigated.


Assuntos
Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Prótese de Quadril , Íons , Próteses Articulares Metal-Metal , Metais , Idoso , Feminino , Expressão Gênica , Humanos , Íons/sangue , Íons/urina , Masculino , Próteses Articulares Metal-Metal/efeitos adversos , Metais/sangue , Metais/urina , Pessoa de Meia-Idade
13.
Curr Pharm Biotechnol ; 16(9): 782-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26201607

RESUMO

In spite of the growing body of evidence on the biology of the Zebrafish embryo and stem cells, including the use of Stem Cell Differentiation Stage Factors (SCDSFs) taken from Zebrafish embryo to impact cancer cell dynamics, comparatively little is known about the possibility to use these factors to modulate the homeostasis of normal human stem cells or to modulate the behavior of cells involved in different pathological conditions. In the present review we recall in a synthetic way the most important researches about the use of SCDSFs in reprogramming cancer cells and in modulating the high speed of multiplication of keratinocytes which is characteristic of some pathological diseases like psoriasis. Moreover we add here the results about the capability of SCDSFs in modulating the homeostasis of human adiposederived stem cells (hASCs) isolated from a fat tissue obtained with a novel-non enzymatic method and device. In addition we report the data not yet published about a first protein analysis of the SCDSFs and about their role in a pathological condition like neurodegeneration.


Assuntos
Diferenciação Celular , Fator de Células-Tronco/metabolismo , Células-Tronco/metabolismo , Peixe-Zebra/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Reprogramação Celular , Humanos , Células-Tronco/citologia , Peixe-Zebra/embriologia
14.
Mol Biol Rep ; 41(9): 6025-38, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24981926

RESUMO

Cysteine/tyrosine-rich 1 (CYYR1) is a gene we previously identified on human chromosome 21 starting from an in-depth bioinformatics analysis of chromosome 21 segment 40/105 (21q21.3), where no coding region had previously been predicted. CYYR1 was initially characterized as a four-exon gene, whose brain-derived cDNA sequencing predicts a 154-amino acid product. In this study we provide, with in silico and in vitro analyses, the first detailed description of the human CYYR1 locus. The analysis of this locus revealed that it is composed of a multi-transcript system, which includes at least seven CYYR1 alternative spliced isoforms and a new CYYR1 antisense gene (named CYYR1-AS1). In particular, we cloned, for the first time, the following isoforms: CYYR1-1,2,3,4b and CYYR1-1,2,3b, which present a different 3' transcribed region, with a consequent different carboxy-terminus of the predicted proteins; CYYR1-1,2,4 lacks exon 3; CYYR1-1,2,2bis,3,4 presents an additional exon between exon 2 and exon 3; CYYR1-1b,2,3,4 presents a different 5' untranslated region when compared to CYYR1. The complexity of the locus is enriched by the presence of an antisense transcript. We have cloned a long transcript overlapping with CYYR1 as an antisense RNA, probably a non-coding RNA. Expression analysis performed in different normal tissues, tumour cell lines as well as in trisomy 21 and euploid fibroblasts has confirmed a quantitative and qualitative variability in the expression pattern of the multi-transcript locus, suggesting a possible role in complex diseases that should be further investigated.


Assuntos
Processamento Alternativo , Proteínas de Membrana/genética , Sequência de Aminoácidos , Simulação por Computador , Éxons , Expressão Gênica , Genes , Loci Gênicos , Humanos , Dados de Sequência Molecular , Especificidade de Órgãos , Isoformas de Proteínas/genética
15.
Ann Hum Biol ; 40(6): 463-71, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23829164

RESUMO

BACKGROUND: All living organisms are made of individual and identifiable cells, whose number, together with their size and type, ultimately defines the structure and functions of an organism. While the total cell number of lower organisms is often known, it has not yet been defined in higher organisms. In particular, the reported total cell number of a human being ranges between 10(12) and 10(16) and it is widely mentioned without a proper reference. AIM: To study and discuss the theoretical issue of the total number of cells that compose the standard human adult organism. SUBJECTS AND METHODS: A systematic calculation of the total cell number of the whole human body and of the single organs was carried out using bibliographical and/or mathematical approaches. RESULTS: A current estimation of human total cell number calculated for a variety of organs and cell types is presented. These partial data correspond to a total number of 3.72 × 10(13). CONCLUSIONS: Knowing the total cell number of the human body as well as of individual organs is important from a cultural, biological, medical and comparative modelling point of view. The presented cell count could be a starting point for a common effort to complete the total calculation.


Assuntos
Contagem de Células , Adulto , Tamanho Celular , Humanos , Modelos Biológicos , Especificidade de Órgãos
16.
Genomics ; 100(2): 125-30, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22659028

RESUMO

The "5' end mRNA artifact" issue refers to the incorrect assignment of the first AUG codon in an mRNA, due to the incomplete determination of its 5' end sequence. We performed a systematic identification of coding regions at the 5' end of all human known mRNAs, using an automated expressed sequence tag (EST)-based approach. Following parsing of more than 7 million BLAT alignments, we found 477 human loci, out of 18,665 analyzed, in which an extension of the mRNA 5' coding region was identified. Proof-of-concept confirmation was obtained by in vitro cloning and sequencing for GNB2L1, QARS and TDP2 cDNAs, and the consequences for the functional studies of these loci are discussed. We also generated a list of 20,775 human mRNAs where the presence of an in-frame stop codon upstream of the known start codon indicates completeness of the coding sequence at 5' in the current form.


Assuntos
Regiões 5' não Traduzidas/genética , Etiquetas de Sequências Expressas , Estudos de Associação Genética/métodos , Genoma Humano , Fases de Leitura Aberta , RNA Mensageiro/genética , Sequência de Aminoácidos , Clonagem Molecular , Códon de Iniciação , Biologia Computacional , DNA Complementar , Bases de Dados Genéticas , Loci Gênicos , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
17.
PLoS One ; 6(9): e24508, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21961037

RESUMO

Human RCAN3 (regulator of calcineurin 3) belongs to the human RCAN gene family.In this study we provide, with in silico and in vitro analyses, the first detailed description of the human multi-transcript RCAN3 locus. Its analysis revealed that it is composed of a multigene system that includes at least 21 RCAN3 alternative spliced isoforms (16 of them identified here for the first time) and a new RCAN3 antisense gene (RCAN3AS). In particular, we cloned RCAN3-1,3,4,5 (lacking exon 2), RCAN3-1a,2,3,4,5, RCAN3-1a,3,4,5, RCAN3-1b,2,3,4,5, RCAN3-1c,2,3,4,5, RCAN3-1c,2,4,5 and RCAN3-1c,3,4,5, isoforms that present a different 5' untranslated region when compared to RCAN3. Moreover, in order to verify the possible 5' incompleteness of previously identified cDNA isoforms with the reference exon 1, ten more alternative isoforms were retrieved. Bioinformatic searches allowed us to identify RCAN3AS, which overlaps in part with exon 1a, on the opposite strand, for which four different RCAN3AS isoforms were cloned.In order to analyze the different expression patterns of RCAN3 alternative first exons and of RCAN3AS mRNA isoforms, RT-PCR was performed in 17 human tissues. Finally, analyses of RCAN3 and RCAN3AS genomic sequences were performed to identify possible promoter regions, to examine donor and acceptor splice sequences and to compare evolutionary conservation, in particular of alternative exon 1 or 1c--exon 2 junctions in different species.The description of its number of transcripts, of their expression patterns and of their regulatory regions can be important to clarify the functions of RCAN3 gene in different pathways and cellular processes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Processamento Alternativo , Éxons/genética , Transcrição Gênica , Sequência de Aminoácidos , Sequência de Bases , Ilhas de CpG/genética , Perfilação da Expressão Gênica , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...