Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biopolymers ; : e23612, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994706

RESUMO

Natural-derived biomaterials can be used as substrates for the growth, proliferation, and differentiation of cells. In this study, bovine vitreous humor as a biological material was cross-linked to silk fibroin with different concentration ratios to design a suitable substrate for corneal tissue regeneration. The cross-linked samples were evaluated with different analyses such as structural, physical (optical, swelling, and degradation), mechanical, and biological (viability, cell adhesion) assays. The results showed that all samples had excellent transparency, especially those with higher silk fibroin content. Increasing the ratio of vitreous humor to silk fibroin decreased mechanical strength and increased swelling and degradation, respectively. There was no significant difference in the toxicity of the samples, and with the increase in vitreous humor ratio, adhesion and cell proliferation increased. Generally, silk fibroin with vitreous humor can provide desirable characteristics as a transparent film for corneal wound healing.

2.
Arch Acad Emerg Med ; 12(1): e14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371445

RESUMO

The optimal therapy for deep wounds is based on the early debridement of necrotic tissue followed by wound coverage to avoid a systemic inflammatory response and optimize scar-free healing. The outcomes are affected by available resources and underlying patient factors, which cause challenges in wound care and suboptimal outcomes. Here we report a patient with deep dermal injury wounds, who was treated with platelet-rich fibrin (PRF) gel, plasma rich in growth factor (PRGF) gel, and acellular fish skin. Patient's outcomes regarding healing and scar quality were collected objectively and subjectively for one year after the injury. Wounds treated with acellular fish skin demonstrated accelerated wound healing, a significantly higher water-storage capacity, and better pain relief. Furthermore, improved functional and cosmetic outcomes, such as elasticity, skin thickness, and pigmentation, were demonstrated. It seems that, the PRGF gel and PRF in combination with acellular fish skin grafts resulted in the faster healing of wounds and better functional and aesthetic outcomes than split-thickness skin grafts treatment.

3.
Curr Drug Deliv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38251691

RESUMO

Cold atmospheric plasma (CAP) is an ionized matter with potential applications in various medical fields, ranging from wound healing and disinfection to cancer treatment. CAP's clinical usefulness stems from its ability to act as an adjustable source of reactive oxygen and nitrogen species (RONS), which are known to function as pleiotropic signaling agents within cells. Plasma-activated species, such as RONS, have the potential to be consistently and precisely released by carriers, enabling their utilization in a wide array of biomedical applications. Furthermore, understanding the behavior of CAP in different environments, including water, salt solutions, culture medium, hydrogels, and nanoparticles, may lead to new opportunities for maximizing its therapeutic potential. This review article sought to provide a comprehensive and critical analysis of current biomaterial approaches for the targeted delivery of plasma-activated species in the hope to boost therapeutic response and clinical applicability.

4.
Int Wound J ; 21(4): e14571, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38111169

RESUMO

Platelet-rich fibrin (PRF), which is the rich source of growth factors, has been used as an efficient scaffold in tissue engineering and wound healing. In this study, tannic acid as a green cross-linker with different concentrations (0.5%, 1%, 5% and 10%) was used to improve the properties of PRF. The cross-linked gel scaffolds were evaluated by analyses such as scanning electron microscopy, Fourier transform infrared spectroscopy, swelling and degradation, mechanical strength, cell toxicity, cell adhesion and antibacterial test. The results showed that the scaffold structure changes by increasing cross-linker concentration. The swelling rate decreased from 49% to 5% for the samples without the cross-linker and with tannic acid (10%), respectively. The degradation percentage for the cross-linked samples was 8%, which showed a lower degradation rate than the non-cross-linked samples (63%). The mechanical strength of the scaffold with the cross-linker increased up to three times (Young's modulus for the non-cross linked and the cross-linked samples: 0.01 and 0.6 MPa, respectively). Cytotoxicity was not observed up to 10% cross-linker concentration. The cells proliferated well on the cross-linked scaffolds and also showed a good antibacterial effect. In general, tannic acid can improve the physical and mechanical properties of PRF without negatively affecting its biological properties.


Assuntos
Fibrina Rica em Plaquetas , Polifenóis , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Fibrina Rica em Plaquetas/metabolismo , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
5.
Int Wound J ; 20(7): 2924-2941, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36924081

RESUMO

Fish skin grafting as a new skin substitute is currently being used in clinical applications. Acceleration of the wound healing, lack of disease transmission, and low cost of the production process can introduce fish skin as a potential alternative to other grafts. An appropriate decellularization process allows the design of 3D acellular scaffolds for skin regeneration without damaging the morphology and extracellular matrix content. Therefore, the role of decellularization processes is very important to maintain the properties of fish skin. In this review article, recent studies on various decellularization processes as well as biological, physical, and mechanical properties of fish skin and its applications with therapeutic effects in wound healing were investigated.


Assuntos
Derme Acelular , Pele Artificial , Animais , Cicatrização , Transplante de Pele , Matriz Extracelular , Peixes
6.
RSC Adv ; 13(9): 6171-6180, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36825295

RESUMO

Hemorrhage control is vital for clinical outcomes after surgical treatment and pre-hospital trauma injuries. Numerous biomaterials have been investigated to control surgical and traumatic bleeding. In this study, for the first time, perlite was introduced as an aluminosilicate biomaterial and compared with other ceramics such as kaolin and bentonite in terms of morphology, cytotoxicity, mutagenicity, and hemostatic evaluations. Cellular studies showed that perlite has excellent viability, good cell adhesion, and high anti-mutagenicity. Coagulation results demonstrated that the shortest clotting time (140 seconds with a concentration of 50 mg mL-1) was obtained for perlite samples compared to other samples. Therefore, perlite seems most efficient as a biocompatible ceramic for hemorrhage control and other biomaterial designs.

7.
Mini Rev Med Chem ; 23(13): 1320-1340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35733304

RESUMO

Plant-derived tannic acid as a green material can play an important role in improving the mechanical and physical properties of biomaterials. Tannic acid can be used as an antioxidant, antimicrobial, and cross-linking agent in biomaterial products due to its unique functional groups. Its active phenolic groups can react with biomaterial functional groups to form bonds that improve performance. In this review, the mechanism of effectiveness of tannic acid as a natural crosslinker in improving the properties of biomaterials for various applications, such as tissue engineering, tissue adhesives, drug delivery, wound healing, and toxicity studies, has been investigated. In general, tannic acid can be a suitable alternative to synthetic crosslinkers in biomaterial applications.


Assuntos
Anti-Infecciosos , Materiais Biocompatíveis , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Taninos/farmacologia , Taninos/química , Cicatrização , Anti-Infecciosos/farmacologia
8.
Int Wound J ; 20(5): 1566-1577, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36372945

RESUMO

Biological matrices can be modified with cross-linkers to improve some of their characteristics as scaffolds for tissue engineering. In this study, chemical cross-linker 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) was used with different ratios (5, 10, 20, 30, and 40 mM) to improve properties such as mechanical strength, denaturation temperature, and degradability of the acellular fish skin as a biological scaffold for tissue engineering applications. Morphological analysis showed that the use of cross-linker at low concentrations had no effect on the structure and textiles of the scaffold, while increasing mechanical strength, denaturation temperature, and degradation time. Cytotoxicity and cellular studies showed that the optimal cross-linker concentration did not significantly affect cell viability as well as cell adhesion. In general, utilising the carbodiimide cross-linker with the optimal ratio can improve the characteristics and function of the biological tissues such as acellular fish skin.


Assuntos
Carbodi-Imidas , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Carbodi-Imidas/química , Engenharia Tecidual , Cicatrização , Adesão Celular
9.
Int Wound J ; 20(2): 484-498, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35912793

RESUMO

Natural biomaterials are crucial in ocular tissue engineering because they allow cells to proliferate, differentiate, and stratify while maintaining the typical epithelial phenotype. In this study, membranes as dressings were formed from silk fibroin and collagen (Co) extracted from fish skin and then modified with carbodiimide chemical cross linker in different concentrations. The samples were evaluated by different analyses such as structural, physical (optical, swelling, denaturation temperature, degradation), mechanical, and biological (viability, cell adhesion, immunocytochemistry) assays. The results showed that all membranes have excellent transparency, especially with higher silk fibroin content. Increasing the cross linker concentration and the ratio of silk fibroin to Co increased the denaturation temperature and mechanical strength and, conversely, reduced the degradation rate and cell adhesion. The samples did not show a significant difference in toxicity with increasing cross linker and silk fibroin ratio. In general, samples with a low silk fibroin ratio combined with cross linker can provide desirable properties as a membrane for corneal wound healing.


Assuntos
Fibroínas , Animais , Fibroínas/uso terapêutico , Fibroínas/química , Cicatrização , Colágeno/uso terapêutico , Colágeno/metabolismo , Adesão Celular , Materiais Biocompatíveis/uso terapêutico , Bandagens
10.
eLight ; 2(1): 18, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187558

RESUMO

Nowadays, viral infections are one of the greatest challenges for medical sciences and human society. While antiviral compounds and chemical inactivation remain inadequate, physical approaches based on irradiation provide new potentials for prevention and treatment of viral infections, without the risk of drug resistance and other unwanted side effects. Light across the electromagnetic spectrum can inactivate the virions using ionizing and non-ionizing radiations. This review highlights the anti-viral utility of radiant methods from the aspects of ionizing radiation, including high energy ultraviolet, gamma ray, X-ray, and neutron, and non-ionizing photo-inactivation, including lasers and blue light.

11.
RSC Adv ; 12(21): 13472-13479, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35527730

RESUMO

Platelet-rich fibrin (PRF) as a rich source of effective growth factors has been used as a scaffold in tissue regeneration. It is known that PRF exhibits rapid degradability against enzymes, which should be decreased using crosslinking agents to reduce the release rate of growth factors and increase the effectiveness of tissue regeneration. In this study, a carbodiimide crosslinker with different concentrations (0.01%, 0.05%, 1%, and 2%) was used to modify and improve the properties of PRF gel. The crosslinked gels were evaluated with analyses such as SEM, swelling, degradability, mechanical strength, release test, cytotoxicity, and cell adhesion. The results showed that with increasing crosslinker concentration, the morphology of the fiber structure changes drastically, the swelling rate decreases from 300% (control) to 160% for the crosslinked gel, the degradation time for the control sample increases from 8 days to more than two weeks for the crosslinked gel, and the Young's modulus increases from 0.15 MPa (control) to 0.61 MPa for the crosslinked samples. Growth factors also showed lower release with increasing crosslinking ratio. Cytotoxicity assays demonstrated that by increasing the crosslinker concentration to 1% w/v, no cytotoxicity was observed. Cellular studies with DAPI staining showed that the cells penetrated well into the gels and were well distributed, especially in gels with lower crosslinker concentrations. In addition, the modified PRF gel can be used as a scaffold for tissue regeneration.

12.
Int Wound J ; 19(8): 2154-2162, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35441469

RESUMO

Acellular skin as a scaffold has a good potential to regenerate or repair damaged tissues. Growth factors such as Plasma Rich in Growth Factor (PRGF) as a rich source of active proteins can accelerate tissue regeneration. In this study, an acellular scaffold derived from fish skin with growth factors was used to repair full-thickness skin defects in a rat model. Cellular results demonstrated that epithelial cells adhere well to acellular scaffolds. The results of animal studies showed that the groups treated with acellular scaffold and growth factor have a high ability to close and heal wounds on the 28th day after surgery. Histological and staining results showed that in the treated groups with scaffold and growth factor, an epidermal layer was formed with some skin appendages similar to normal skin. Overall, such scaffolds with biological agents can cause an acceptable synergistic effect on skin regeneration and wound healing.


Assuntos
Alicerces Teciduais , Cicatrização , Ratos , Animais , Epiderme , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico
13.
Curr Stem Cell Res Ther ; 17(5): 415-439, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35125084

RESUMO

For many years, discovering the appropriate methods for the treatment of skin irritation has been challenging for specialists and researchers. Bio-printing can be extensively applied to address the demand for proper skin substitutes to improve skin damage. Nowadays, to make more effective biomimicry of natural skin, many research teams have developed cell-seeded bio-inks for bioprinting of skin substitutes. These loaded cells can be single or co-cultured in these structures. The present review gives a comprehensive overview of the methods, substantial parameters of skin bioprinting, examples of in vitro and in vivo studies, and current advances and challenges in skin tissue engineering.


Assuntos
Bioimpressão , Bioimpressão/métodos , Humanos , Impressão Tridimensional , Pele , Engenharia Tecidual/métodos , Alicerces Teciduais/química
14.
Curr Stem Cell Res Ther ; 17(1): 58-70, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34269669

RESUMO

Light can act as an effective and strong agent for the cross-linking of biomaterials and tissues and is recognized as a safe substitute for chemical cross-linkers to modify mechanical and physical properties and promote biocompatibility. This review focuses on the research about crosslinked biomaterials with different radiation sources such as Laser or ultraviolet (UV) that can be applied as scaffolds, controlled release systems,and tissue adhesives for cornea healing and tissue regeneration.


Assuntos
Materiais Biocompatíveis , Cicatrização , Biopolímeros , Córnea , Reagentes de Ligações Cruzadas , Humanos , Engenharia Tecidual , Alicerces Teciduais
15.
Regen Med ; 16(6): 581-605, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34030458

RESUMO

Microorganisms such as bacteria and their derived biopolymers can be used in biomaterials and tissue regeneration. Various methods have been applied to regenerate damaged tissues, but using probiotics and biomaterials derived from bacteria with improved economic-production efficiency and highly applicable properties can be a new solution in tissue regeneration. Bacteria can synthesize numerous types of biopolymers. These biopolymers possess many desirable properties such as biocompatibility and biodegradability, making them good candidates for tissue regeneration. Here, we reviewed different types of bacterial-derived biopolymers and highlight their applications for tissue regeneration.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Bactérias , Biopolímeros , Alicerces Teciduais , Cicatrização
16.
J Craniofac Surg ; 32(2): 794-798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33705038

RESUMO

ABSTRACT: Alternative treatment approaches to improve the regeneration ability of damaged peripheral nerves are currently under investigation. The aim of the current study was to evaluate the effects of leucocyte/platelet-rich fibrin (L-PRF) with or without a collagen membrane as a supporter on crushed sciatic nerve healing in a rat model. Recovery of motor function and electrophysiologic measurements were evaluated at 4 weeks postoperatively. The whole number of myelinated axons, peripheral nerve axon density, average nerve fiber diameter (µm), and G-ratio were analyzed and compered among the groups. Functional, electrophysiological, and histological evaluations showed no significant difference among the groups with the exception of the L-PRF with collagen membrane groups that showed relatively positive effects on the functional and histological nerve recovery. In addition, the collagen membrane with L-PRF can be effect in nerve regeneration.


Assuntos
Fibrina Rica em Plaquetas , Animais , Axônios , Colágeno , Regeneração Nervosa , Ratos , Nervo Isquiático
17.
Tissue Cell ; 71: 101509, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33621947

RESUMO

The use of decellularized natural skin as an extracellular matrix (ECM) may be a great candidate to regenerate damaged tissues. In this study, decellularized scaffolds from fish skin were designed by different techniques (physical, chemical, and enzymatic methods) and investigated by analyses such as Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), Tensile strength, Degradability, Histological studies, Toxicity test, and Determination of DNA content. Results showed that the best sample is related to the decellularized skin by hypertonic & hypotonic technique and Triton X100 solutions. Structural and mechanical results were demonstrated that samples have similar properties to human skin to regenerate it. The cytotoxicity results showed that decellularized skin by hypertonic & hypotonic method and Triton solution is non-toxic with minimal amount of genetic materials. Cellular results with epithelial cells indicated good adhesion on decellularized matrix, so it can be a suitable candidate for skin tissue regeneration.


Assuntos
Carpas , Teste de Materiais , Regeneração , Fenômenos Fisiológicos da Pele , Alicerces Teciduais/química , Animais , Camundongos , Pele/química , Pele/metabolismo
18.
Int J Nanomedicine ; 13: 4405-4416, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30104874

RESUMO

BACKGROUND: Collagen and chondroitin sulfate (CS) are an essential component of the natural extracellular matrix (ECM) of most tissues. They provide the mechanical stability to cone the compressive forces in ECM. In tissue engineering, electrospun nanofibrous scaffolds prepared by electrospinning technique have emerged as a suitable candidate to imitate natural ECM functions. Cross-linking with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxy succinimide can overcome the weak mechanical integrity of the engineered scaffolds in addition to the increased degradation stability under physiological conditions. MATERIALS AND METHODS: This study has synthesized nanofibrous collagen-CS scaffolds by using the electrospinning method. RESULTS: The results have shown that incorporation of CS in higher concentration, along with 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride/N-hydroxy succinimide, enhanced mechanical stability. Scaffolds showed more resistance to collagenase digestion. Fabricated scaffolds showed biocompatibility in corneal epithelial cell attachment. CONCLUSION: These results demonstrate that cross-linked electrospun CO-CS mats exhibited a uniform nanofibrous and porous structure, especially for lower concentration of the cross-linker and may be utilized as an alternative effective substrate in tissue engineering.


Assuntos
Materiais Biocompatíveis/farmacologia , Carbodi-Imidas/química , Sulfatos de Condroitina/farmacologia , Colágeno/farmacologia , Reagentes de Ligações Cruzadas/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio Corneano/citologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Peixes , Humanos , Nanofibras/química , Nanofibras/ultraestrutura , Porosidade , Tubarões , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Int J Biol Macromol ; 116: 272-280, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29729338

RESUMO

The current study deals with the preparation and characterization of polysaccharide-based biocomposite films acquired by the incorporation of cellulose nanofiber within glycerol plasticized matrix formed by starch. The application of starch-based films is limited due to highly hydrophilic nature and poor mechanical properties. These problems are solved by forming a nanocomposite of thermoplastic starch (TPS) as matrix and cellulose nanofiber (CNF) as reinforcement. CNF is successfully prepared from short henequen fibers which consist of almost 60% cellulose by a chemo-mechanical process. TPS/CNF composite films are prepared by the polymer solution casting method, and their characterizations are obtained by water vapor transmission rate (WVTR), atomic force microscopy (AFM), oxygen transmission rate (OTR), X-ray diffraction, light transmittance and tensile test. The 0.4 wt% CNF loaded TPS films showed approximately the maximum improvement in tensile strength. Tensile strength and elastic modulus increased by up to 80% and 170% respectively. Above 0.5 wt% CNF, tensile strength starts to deteriorate. WVTR and OTR results show improvement in water vapor barrier properties of TPS matrix. The AFM analysis shows the topography of the surface of the nanocomposite. The morphology of nanofibers is studied by using the scanning electron microscopy (SEM) and the transmission electron microscopy (TEM).


Assuntos
Celulose/química , Nanocompostos/química , Nanofibras/química , Amido/química , Módulo de Elasticidade/efeitos dos fármacos , Glicerol/química , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Plastificantes/química , Polissacarídeos/química , Vapor , Resistência à Tração/efeitos dos fármacos , Difração de Raios X/métodos
20.
J Med Eng Technol ; 42(3): 187-202, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29671367

RESUMO

In the last decade, the use of new technologies in the reconstruction of body tissues has greatly developed. Utilising stem cell technology, nanotechnology and scaffolding design has created new opportunities in tissue regeneration. The use of accurate engineering design in the creation of scaffolds, including 3D printers, has been widely considered. Three-dimensional printers, especially high precision bio-printers, have opened up a new way in the design of 3D tissue engineering scaffolds. In this article, a review of the latest applications of this technology in this promising area has been addressed.


Assuntos
Impressão Tridimensional , Engenharia Tecidual , Animais , Humanos , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA