Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 37(14): e9534, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37147273

RESUMO

RATIONALE: Selective derivatization of peptide N-terminus with 4-formyl-benzenesulfonic acid (FBSA) enables chemically activated fragmentation in positive and negative ion modes (ESI+/-) under charge reduction conditions. Overlapped positive and negative tandem mass spectra show b-ions making the assignment of b-ion series fragments easy and accurate. METHODS: We developed an FBSA-peptide microwave-assisted derivatization procedure. Derivatized and nonderivatized bovine serum albumin tryptic peptides and insulin non-tryptic peptide were compared after tandem mass spectrometry (MS/MS) analysis in positive and negative ion modes. A high-quality data set of sulfonated b-ions obtained in negative tandem mass spectra of singly charged FBSA-peptides were matched to detected b-ions in positive MS/MS spectra. Moreover, negative spectra signals were converted and matched against y-ions in positive tandem mass spectra to identify complete peptide sequences. RESULTS: The FBSA derivatization procedure produced a significantly improved MS/MS data set (populated by high-intensity signals of b- and y-ions) compared to commonly used N-terminal sulfonation reagents. Undesired side reactions almost do not occur, and the procedure reduces the derivatization time. It was found that b-ion intensities comprise 15% and 13% compared to combined ion intensities generated in positive- and negative ion modes, respectively. High visibility of b-ion series in negative ion mode can be attributed to N-terminal sulfonation that had no negative effect on the production of b- and y-ion series in positive ion mode. CONCLUSIONS: The FBSA derivatization and de novo sequencing approach outlined here is a reliable method for accurate peptide sequence assignment. Increased production of b-ions in positive- and negative ion modes greatly improves peak assignment and thus enables accurate sequence reconstruction. Implementation of the named methodology would improve the quality of de novo sequencing data and reduce the number of misinterpreted spectra.


Assuntos
Peptídeos , Espectrometria de Massas em Tandem , Peptídeos/química , Sequência de Aminoácidos , Íons , Espectrometria de Massas por Ionização por Electrospray/métodos
2.
Plants (Basel) ; 12(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36840096

RESUMO

Plastic contamination has become one of the most pressing environmental issues due to rapidly increasing production of disposable plastic products, their fragmentation into smaller pieces, and long persistence in the environment, which affects all living organisms, including plants. In this study, Allium cepa roots were exposed to 0.01, 0.1, and 1 g L-1 of commercial polystyrene (PS-MPs) and polymethyl methacrylate microparticles (PMMA-MPs) for 72 h. Dynamic light scattering (DLS) analyses showed high stability of both types of MPs in ultrapure water used for A. cepa treatment. Morphometric analysis revealed no significant change in root length compared to control. Pyrolysis hyphenated to gas chromatography and mass spectrometry (Py-GC-MS) has proven PS-MPs uptake by onion roots in all treatments, while PMMA-MPs were recorded only upon exposure to the highest concentration. Neither MPs induced any (cyto)toxic effect on root growth and PMMA-MPs even had a stimulating effect on root growth. ROS production as well as lipid and protein oxidation were somewhat higher in PS-MP treatments compared to the corresponding concentrations of PMMA-MP, while neither of the applied MPs induced significant damage to the DNA molecule assayed with a Comet test. Significantly elevated activity of H2O2 scavenging enzymes, catalase, and peroxidases was measured after exposure to both types of MPs. Obtained results suggest that onion roots take up PS-MPs more readily in comparison to PMMA-MPs, while both types of MPs induce a successful activation of antioxidant machinery in root cells that prevented the occurrence of toxic effects.

3.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555562

RESUMO

The harmful effects of silver nanoparticles (AgNPs) have been confirmed in many organisms, but the mechanism of their toxicity is not yet fully understood. In biological systems, AgNPs tend to aggregate and dissolve, so they are often stabilized by coatings that influence their physico-chemical properties. In this study, the effects of AgNPs with different coatings [polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB)] on oxidative stress appearance and proteome changes in tobacco (Nicotiana tabacum) seedlings have been examined. To discriminate between the nanoparticulate Ag form from the ionic one, the treatments with AgNO3, a source of Ag+ ions, were also included. Ag uptake and accumulation were found to be similarly effective upon exposure to all treatment types, although positively charged AgNP-CTAB showed less stability and a generally stronger impact on the investigated parameters in comparison with more stable and negatively charged AgNP-PVP and ionic silver (AgNO3). Both AgNP treatments induced reactive oxygen species (ROS) formation and increased the expression of proteins involved in antioxidant defense, confirming oxidative stress as an important mechanism of AgNP phytotoxicity. However, the mechanism of seedling responses differed depending on the type of AgNP used. The highest AgNP-CTAB concentration and CTAB coating resulted in increased H2O2 content and significant damage to lipids, proteins and DNA molecules, as well as a strong activation of antioxidant enzymes, especially CAT and APX. On the other hand, AgNP-PVP and AgNO3 treatments induced the nonenzymatic antioxidants by significantly increasing the proline and GSH content. Exposure to AgNP-CTAB also resulted in more noticeable changes in the expression of proteins belonging to the defense and stress response, carbohydrate and energy metabolism and storage protein categories in comparison to AgNP-PVP and AgNO3. Cysteine addition significantly reduced the effects of AgNP-PVP and AgNO3 for the majority of investigated parameters, indicating that AgNP-PVP toxicity mostly derives from released Ag+ ions. AgNP-CTAB effects, however, were not alleviated by cysteine addition, suggesting that their toxicity derives from the intrinsic properties of the nanoparticles and the coating itself.


Assuntos
Antioxidantes , Nanopartículas Metálicas , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Nicotiana/metabolismo , Plântula/metabolismo , Prata/química , Proteômica , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Cetrimônio/farmacologia , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Nitrato de Prata/toxicidade
4.
Plants (Basel) ; 11(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36145803

RESUMO

The antimicrobial properties of silver and enhanced reactivity when applied in a nanoparticle form (AgNPs) led to their growing utilization in industry and various consumer products, which raises concerns about their environmental impact. Since AgNPs are prone to transformation, surface coatings are added to enhance their stability. AgNP phytotoxicity has been mainly attributed to the excess generation of reactive oxygen species (ROS), leading to the induction of oxidative stress. Herein, in vitro-grown tobacco (Nicotiana tabacum) plants were exposed to AgNPs stabilized with either polyvinylpyrrolidone (PVP) or cetyltrimethylammonium bromide (CTAB) as well as to ionic silver (AgNO3), applied in the same concentrations, either alone or in combination with cysteine, a strong silver ligand. The results show a higher accumulation of Ag in roots and leaves after exposure to AgNPs compared to AgNO3. This was correlated with a predominantly higher impact of nanoparticle than ionic silver form on parameters of oxidative stress, although no severe damage to important biomolecules was observed. Nevertheless, all types of treatments caused mobilization of antioxidant machinery, especially in leaves, although surface coatings modulated the activation of its specific components. Most effects induced by AgNPs or AgNO3 were alleviated with addition of cysteine.

5.
Nanomaterials (Basel) ; 12(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35009971

RESUMO

Silver nanoparticles (AgNPs) have been implemented in a wide range of commercial products, resulting in their unregulated release into aquatic as well as terrestrial systems. This raises concerns over their impending environmental effects. Once released into the environment, they are prone to various transformation processes that modify their reactivity. In order to increase AgNP stability, different stabilizing coatings are applied during their synthesis. However, coating agents determine particle size and shape and influence their solubility, reactivity, and overall stability as well as their behavior and transformations in the biological medium. In this review, we attempt to give an overview on how the employment of different stabilizing coatings can modulate AgNP-induced phytotoxicity with respect to growth, physiology, and gene and protein expression in terrestrial and aquatic plants and freshwater algae.

6.
Int J Mol Sci ; 21(10)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414057

RESUMO

Silver nanoparticles (AgNPs) are used in a wide range of consumer products because of their excellent antimicrobial properties. AgNPs released into the environment are prone to transformations such as aggregation, oxidation, or dissolution so they are often stabilised by coatings that affect their physico-chemical properties and change their effect on living organisms. In this study we investigated the stability of polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB) coated AgNPs in an exposure medium, as well as their effect on tobacco germination and early growth. AgNP-CTAB was found to be more stable in the solid Murashige and Skoog (MS) medium compared to AgNP-PVP. The uptake and accumulation of silver in seedlings was equally efficient after exposure to both types of AgNPs. However, AgNP-PVP induced only mild toxicity on seedlings growth, while AgNP-CTAB caused severe negative effects on all parameters, even compared to AgNO3. Moreover, CTAB coating itself exerted negative effects on growth. Cysteine addition generally alleviated AgNP-PVP-induced negative effects, while it failed to improve germination and growth parameters after exposure to AgNP-CTAB. These results suggest that the toxic effects of AgNP-PVP are mainly a consequence of release of Ag+ ions, while phytotoxicity of AgNP-CTAB can rather be ascribed to surface coating itself.


Assuntos
Germinação/efeitos dos fármacos , Nanopartículas Metálicas/química , Nicotiana/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Íons/química , Oxirredução , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Prata/química , Prata/farmacologia , Nicotiana/efeitos dos fármacos
7.
Environ Sci Pollut Res Int ; 26(22): 22529-22550, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31161543

RESUMO

Widespread application of silver nanoparticles (AgNPs), due to their antibacterial and antifungal properties, increases their release into the environment and potential detrimental impact on living organisms. Plants may serve as a potential pathway for AgNPs bioaccumulation and a route into the food chain, hence investigation of AgNP phytotoxic effects are of particular importance. Since proteins are directly involved in stress response, studies of their abundance changes can help elucidate the mechanism of the AgNP-mediated phytotoxicity. In this study, we investigated proteomic changes in tobacco (Nicotiana tabacum) exposed to AgNPs and ionic silver (AgNO3). A high overlap of differently abundant proteins was found in root after exposure to both treatments, while in leaf, almost a half of the proteins exhibited different abundance level between treatments, indicating tissue-specific responses. Majority of the identified proteins were down-regulated in both tissues after exposure to either AgNPs or AgNO3; in roots, the most affected proteins were those involved in response to abiotic and biotic stimuli and oxidative stress, while in leaf, both treatments had the most prominent effect on photosynthesis-related proteins. However, since AgNPs induced higher suppression of protein abundance than AgNO3, we conclude that AgNP effects can, at least partially, be attributed to nanoparticle form.


Assuntos
Nanopartículas Metálicas/toxicidade , Nicotiana/fisiologia , Prata/toxicidade , Íons , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteoma/metabolismo , Proteômica , Nitrato de Prata/toxicidade , Nicotiana/metabolismo
8.
Chemosphere ; 209: 640-653, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29958162

RESUMO

Since silver nanoparticles (AgNPs) are a dominant nanomaterial in consumer products, there is growing concern about their impact on the environment. Although numerous studies on the effects of AgNPs on living organisms have been conducted, the interaction of AgNPs with plants has not been fully clarified. To reveal the plant mechanisms activated after exposure to AgNPs and to differentiate between effects specific to nanoparticles and ionic silver, we investigated the physiological, ultrastructural and proteomic changes in seedlings of tobacco (Nicotiana tabacum) exposed to commercial AgNPs and ionic silver (AgNO3) from the seed stage. A higher Ag content was measured in seedlings exposed to AgNPs than in those exposed to the same concentration of AgNO3. However, the results on oxidative stress parameters obtained revealed that, in general, higher toxicity was recorded in AgNO3-treated seedlings than in those exposed to nanosilver. Ultrastructural analysis of root cells confirmed the presence of silver in the form of nanoparticles, which may explain the lower toxicity of AgNPs. However, the ultrastructural changes of chloroplasts as well as proteomic study showed that both AgNPs and AgNO3 can affect photosynthesis. Moreover, the majority of the proteins involved in the primary metabolism were up-regulated after both types of treatments, indicating that enhanced energy production, which can be used to reinforce defensive mechanisms, enables plants to cope with silver-induced toxicity.


Assuntos
Nanopartículas Metálicas/química , Nicotiana/química , Proteômica/métodos , Plântula/efeitos dos fármacos , Nitrato de Prata/química , Prata/química
9.
Environ Sci Pollut Res Int ; 25(6): 5590-5602, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29222658

RESUMO

The small size of nanoparticles (NPs), with dimensions between 1 and 100 nm, results in unique chemical and physical characteristics, which is why they are implemented in various consumer products. Therefore, an important concern is the potential detrimental impact of NPs on the environment. As plants are a vital part of ecosystem, investigation of the phytotoxic effects of NPs is particularly interesting. This study investigated the potential phytotoxicity of silver nanoparticles (AgNPs) on tobacco (Nicotiana tabacum) plants and compared it with the effects of the same AgNO3 concentrations. Accumulation of silver in roots and leaves was equally efficient after both AgNP and AgNO3 treatment, with predominant Ag levels found in the roots. Exposure to AgNPs did not result in elevated values of oxidative stress parameters either in roots or in leaves, while AgNO3 induced oxidative stress in both plant tissues. In the presence of both AgNPs and AgNO3, root meristem cells became highly vacuolated, which indicates that vacuoles might be the primary storage target for accumulated Ag. Direct AgNP uptake by root cells was confirmed. Leaf ultrastructural studies revealed changes mainly in the size of chloroplasts of AgNP-treated and AgNO3-treated plants. All of these findings indicate that nano form of silver is less toxic to tobacco plants than silver ions.


Assuntos
Poluentes Ambientais/toxicidade , Nanopartículas Metálicas/toxicidade , Nicotiana/efeitos dos fármacos , Prata/toxicidade , Relação Dose-Resposta a Droga , Poluentes Ambientais/química , Íons , Meristema/efeitos dos fármacos , Meristema/metabolismo , Nanopartículas Metálicas/química , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Prata/química , Nitrato de Prata/química , Nitrato de Prata/toxicidade , Propriedades de Superfície , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...