Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 5: 4008, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24915772

RESUMO

Silicon photonics has emerged as the leading candidate for implementing ultralow power wavelength-division-multiplexed communication networks in high-performance computers, yet current components (lasers, modulators, filters and detectors) consume too much power for the high-speed femtojoule-class links that ultimately will be required. Here we demonstrate and characterize the first modulator to achieve simultaneous high-speed (25 Gb s(-1)), low-voltage (0.5 VPP) and efficient 0.9 fJ per bit error-free operation. This low-energy high-speed operation is enabled by a record electro-optic response, obtained in a vertical p-n junction device that at 250 pm V(-1) (30 GHz V(-1)) is up to 10 times larger than prior demonstrations. In addition, this record electro-optic response is used to compensate for thermal drift over a 7.5 °C temperature range with little additional energy consumption (0.24 fJ per bit for a total energy consumption below 1.03 J per bit). The combined results of highly efficient modulation and electro-optic thermal compensation represent a new paradigm in modulator development and a major step towards single-digit femtojoule-class communications.

2.
Opt Lett ; 37(20): 4236-8, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23073422

RESUMO

We experimentally demonstrate silicon ring resonators with internal quality factors of Q(0)=2.2×10(7), corresponding to record 2.7 dB/m propagation losses. Importantly, we show that these propagation losses are limited by bend loss, indicating that the propagation loss limit for silicon has not yet been reached.

3.
Rep Prog Phys ; 75(4): 046402, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22790508

RESUMO

Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.

4.
Opt Express ; 20(28): 29223-36, 2012 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-23388748

RESUMO

In this work, we demonstrate and experimentally characterize a new class of high-performance silicon photonic modulators-the adiabatic microring modulator. The adiabatic microring modulator utilizes a vertical PN junction and interior electrical contacts, leveraging all the advantages of previously-demonstrated microdisk modulators. However, this device also incorporates an adiabatic transition from the wide, multimode contact region, to a narrow, single-mode coupling region, eliminating unwanted spatial modes common to microdisks. As a result, the adiabatic microring modulator demonstrated in this work is the smallest microring modulator demonstrated to date, with a diameter of only 4 µm, yielding a 6.92-THz uncorrupted free spectral range. Here, we perform an experimental comparative analysis between silicon adiabatic microring modulators, silicon microdisk modulators, and a commercial lithium-niobate Mach-Zehnder modulator. We show that the silicon adiabatic microring modulator using partial doping is capable of operating at 12.5-Gb/s data rates and beyond. This device combines the best of all modulator designs, leveraging the depletion-based method to maximize the speed, utilizing the vertical-junction configuration to minimize the power consumption, employing a unique adiabatic design to eliminate higher-order modes, and using partial doping to reduce resistance, further enhancing the speed of the device.

5.
Opt Express ; 18(15): 15544-52, 2010 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-20720934

RESUMO

We report error-free long-haul transmission of optical data modulated using a silicon microring resonator electro-optic modulator with modulation rates up to 12.5 Gb/s. Using bit-error-rate and power penalty characterizations, we evaluate the performance of this device with varying modulation rates, and perform a comparative analysis using a commercial electro-optic modulator. We then experimentally measure the signal integrity degradation of the high-speed optical data with increasing propagation distances, induced chromatic dispersions, and bandwidth-distance products, showing error-free transmission for propagation distances up to 80 km. These results confirm the functional ubiquity of this silicon modulator, establishing the potential role of silicon photonic interconnects for chip-scale high-performance computing systems and memory access networks, optically-interconnected data centers, as well as high-performance telecommunication networks spanning large distances.

6.
Opt Express ; 18(17): 18047-55, 2010 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20721191

RESUMO

We demonstrate a scalable, energy-efficient, and pragmatic method for high-bandwidth wavelength multicasting using FWM in silicon photonic nanowires. We experimentally validate up to a sixteen-way multicast of 40-Gb/s NRZ data using spectral and temporal responses, and evaluate the resulting data integrity degradation using BER measurements and power penalty performance metrics. We further examine the impact of this wavelength multicasting scalability on conversion efficiency. Finally, we experimentally evaluate up to a three-way multicast of 160-Gb/s pulsed-RZ data using spectral and temporal responses, representing the first on-chip wavelength multicasting of pulsed-RZ data.


Assuntos
Nanotecnologia/instrumentação , Nanofios , Dispositivos Ópticos , Silício/química , Telecomunicações/instrumentação , Desenho de Equipamento , Dinâmica não Linear
7.
Opt Express ; 16(20): 15915-22, 2008 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-18825228

RESUMO

We demonstrate here a spatially non-blocking optical 4x4 router with a footprint of 0.07 mm(2) for use in future integrated photonic interconnection networks. The device is dynamically switched using thermo-optically tuned silicon microring resonators with a wavelength shift to power ratio of 0.25nm/mW. The design can route four optical inputs to four outputs with individual bandwidths of up to 38.5 GHz. All tested configurations successfully routed a single-wavelength laser and provided a maximum extinction ratio larger than 20 dB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA