Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13228, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38853164

RESUMO

Petroleum fuels are commonly used for automobiles. However, the continuous depletion and exhaust gas emission causes serious problems. So, there is a need for an alternative eco-friendly fuel. Biodiesel is a type of fuel manufactured through a process called transesterification, which involves converting vegetable oils into a usable form. The process parameters of the transesterification process were optimized using the Taguchi method to achieve maximum biodiesel yield. However, the main problem of biodiesel is its high cost which could be reduced by using low-cost feedstock. To address this challenge, biodiesel (BCFAD) is derived from coconut fatty acid distillate (CFAD), a by-product obtained from refining coconut oil. This work uses BCFAD and BCFAD with Alumina nanoparticles as fuels. Alumina nanoparticles in the mass fraction of 25 ppm, 50 ppm, and 100 ppm are dispersed in BCFAD. The investigation results reveal an increase of 6.5% in brake thermal efficiency for BCFAD with 100 ppm nanoparticles when compared to BCFAD. There is a reduction of 29.29% of hydrocarbon and 34% of Carbon monoxide emissions with BCFAD100 in comparison with diesel. However, there is a marginal increase in NOx emission with the increase in nanoparticles. The heat release rate and cylinder pressure of BCFAD100 are comparable to diesel fuel. It was concluded that the utilization of BCFAD with a nanoparticle dispersion of 100 ppm is suitable for direct use as fuel in diesel engines.

2.
Sci Rep ; 13(1): 18362, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884612

RESUMO

The objective of the present investigation is to enhance the performance of diesel engine using Capparis spinoza fatty acid distillate biodiesel (CFAB100) at various compression ratios. The experiments were carried out at compression ratios of 16.5:1, 17.5:1, 18.5:1, and 19.5:1. It was noted that an increase in compression ratio from 16.5 to 18.5 resulted in better engine characteristics for CFAB100 and reduced at compression ratio 19.5. Brake-specific fuel consumption of CFAB100 decreased from 0.42 to 0.33 kg/kWh with an increase in compression ratio. The brake thermal efficiency of CFAB100 at a compression ratio of 16.5 is 29.64% lower than diesel, whereas it is 11.32% low at a compression ratio of 18.5. The brake thermal efficiency of CFAB100 is 26.03% higher at a compression ratio of 18.5 compared to 16.5. Due to shorter ignition delay and reduced premixed combustion, the net heat release rate of CFAB100 is lower than diesel at all compression ratios. The peak cylinder pressure for diesel is 56.21 bar, and CFAB100 at compression ratios 16.5, 17.5, 18.5, and 19.5 were 52.36, 55.12, 61.02 and 58.25 bar at full load condition. CFAB100, at a compression ratio of 18.5, had the highest nitrogen oxide emissions (2400 ppm). Carbon monoxide, unburnt hydrocarbon, and smoke showed an average reduction of 46.58%, 40.68%, and 54.89%, respectively, when the compression ratio varied between 16.5 and 19.5. At an optimum compression ratio of 18.5, the CFAB100 resulted in improved performance and emission characteristics that can replace diesel to a possible extent.

3.
Environ Res ; 224: 115432, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791837

RESUMO

Uncontrolled emissions, massive price increases, and other factors encourage searching for a suitable diesel engine fuel alternative. In its processed form, vegetable oil biodiesel is an appealing green alternative fuel for compression ignition engines. Vegetable oil esters have qualities comparable to those of standard diesel fuel. As a result, biodiesel may be utilized to run a diesel engine without any further alterations. This article analyses the potential of Phoenix sylvestris oil, which may be found in forest belts across the globe, as a viable feedstock for biodiesel extraction. Phoenix sylvestris oil is found to be abundant in different forest belts worldwide. The free fatty acid must first be transformed into esters using catalytic acid esterification before proceeding to alkaline catalytic esterification. The molar ratio (6:1), catalyst concentration (1 wt%), reaction temperature (60 °C), and reaction time (2 h) have all been optimized for biodiesel extraction. Biodiesel produced had characteristics that were similar to standard biodiesel specifications. The biodiesel yield from Phoenix sylvestris oil was 92.3% under optimum conditions. The experimental results revealed that the Phoenix sylvestris oil biodiesel performed better than neat Phoenix sylvestris oil and its blends. Phoenix sylvestris oil blend produced better brake thermal efficiency with lower smoke, hydrocarbon, and CO emissions. The biodiesel produced from non-edible Phoenix sylvestris oil has the potential to be employed as a viable alternative to diesel fuel.


Assuntos
Biocombustíveis , Gasolina , Gasolina/análise , Biocombustíveis/análise , Emissões de Veículos/análise , Hidrocarbonetos , Óleos de Plantas , Ésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...