RESUMO
Recently, we demonstrated that the stimulatory effect of Ang II on the Na(+)-ATPase activity in proximal tubules is reversed, in a dose-dependent manner, by Ang-(1-7) [Biochim. Biophys. Acta 1467 (2000) 189]. In the present paper, we characterized the receptor involved in this phenomenon. The preincubation of the Na(+)-ATPase with 10(-8) M Ang II increases the enzyme activity from 7.50+/-0.02 (control) to 12.40+/-1.50 nmol Pi mg(-1) min(-1) (p<0.05). Addition of 10(-9) M Ang-(1-7) completely reverts this effect returning the ATPase activity to the control level. This effect seems to be specific to Ang-(1-7) since Ang III (10(-12)-10(-8) M) does not modify the stimulation of the renal proximal tubule Na(+)-ATPase activity by Ang II. Saralasin abolishes the Ang-(1-7) effect in a dose-dependent manner being the maximal effect obtained at 10(-11) M. The increase in A779 concentration (from 10(-12) to 10(-7) M), a specific Ang-(1-7) antagonist, also abolishes the Ang-(1-7) effect. On the other hand, PD123319 (10(-8)-10(-6) M), an AT(2) antagonist receptor, and losartan (10(-12)-10(-7) M), an AT(1) antagonist receptor, does not modify the effect of Ang-(1-7). Taken together, these data indicate that Ang-(1-7) reverts the stimulatory effect of Ang II on the Na(+)-ATPase activity in proximal tubule through a A779-sensitive receptor.