Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4076, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744824

RESUMO

Carbon nanotubes (CNTs), hollow cylinders of carbon, hold great promise for advanced technologies, provided their structure remains uniform throughout their length. Their growth takes place at high temperatures across a tube-catalyst interface. Structural defects formed during growth alter CNT properties. These defects are believed to form and heal at the tube-catalyst interface but an understanding of these mechanisms at the atomic-level is lacking. Here we present DeepCNT-22, a machine learning force field (MLFF) to drive molecular dynamics simulations through which we unveil the mechanisms of CNT formation, from nucleation to growth including defect formation and healing. We find the tube-catalyst interface to be highly dynamic, with large fluctuations in the chiral structure of the CNT-edge. This does not support continuous spiral growth as a general mechanism, instead, at these growth conditions, the growing tube edge exhibits significant configurational entropy. We demonstrate that defects form stochastically at the tube-catalyst interface, but under low growth rates and high temperatures, these heal before becoming incorporated in the tube wall, allowing CNTs to grow defect-free to seemingly unlimited lengths. These insights, not readily available through experiments, demonstrate the remarkable power of MLFF-driven simulations and fill long-standing gaps in our understanding of CNT growth mechanisms.

3.
Proc Natl Acad Sci U S A ; 121(2): e2316498121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38170754

RESUMO

Glasses are commonly described as disordered counterparts of the corresponding crystals; both usually share the same short-range order, but glasses lack long-range order. Here, a quantification of chemical bonding in a series of glasses and their corresponding crystals is performed, employing two quantum-chemical bonding descriptors, the number of electrons transferred and shared between adjacent atoms. For popular glasses like SiO2, GeSe2, and GeSe, the quantum-chemical bonding descriptors of the glass and the corresponding crystal hardly differ. This explains why these glasses possess a similar short-range order as their crystals. Unconventional glasses, which differ significantly in their short-range order and optical properties from the corresponding crystals are only found in a distinct region of the map spanned by the two bonding descriptors. This region contains crystals of GeTe, Sb2Te3, and GeSb2Te4, which employ metavalent bonding. Hence, unconventional glasses are only obtained for solids, whose crystals employ theses peculiar bonds.

4.
ACS Nano ; 17(8): 7135-7144, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37014049

RESUMO

Recent direct measurements of the growth kinetics of individual carbon nanotubes revealed abrupt changes in the growth rate of nanotubes maintaining the same crystal structure. These stochastic switches call into question the possibility of chirality selection based on growth kinetics. Here, we show that a similar average ratio between fast and slow rates of around 1.7 is observed largely independent of the catalyst and growth conditions. A simple model, supported by computer simulations, shows that these switches are caused by tilts of the growing nanotube edge between two main orientations, close-armchair or close-zigzag, inducing different growth mechanisms. The rate ratio of around 1.7 then simply results from an averaging of the number of growth sites and edge configurations in each orientation. Beyond providing insights on nanotube growth based on classical crystal growth theory, these results point to ways to control the dynamics of nanotube edges, a key requirement for stabilizing growth kinetics and producing arrays of long, structurally selected nanotubes.

5.
Nano Lett ; 21(19): 8495-8502, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34596406

RESUMO

Understanding the kinetic selectivity of carbon nanotube growth at the scale of individual nanotubes is essential for the development of high chiral selectivity growth methods. Here we demonstrate that homodyne polarization microscopy can be used for high-throughput imaging of long individual carbon nanotubes under real growth conditions (at ambient pressure, on a substrate) and with subsecond time resolution. Our in situ observations on hundreds of individual nanotubes reveal that about half of them grow at a constant rate all along their lifetime while the other half exhibits stochastic changes in growth rates and/or switches between growth, pause, and shrinkage. Statistical analysis shows that the growth rate of a given nanotube essentially varies between two values, with a similar average ratio (∼1.7) regardless of whether the rate change is accompanied by a change in chirality. These switches indicate that the nanotube edge or the catalyst nanoparticle fluctuates between different configurations during growth.


Assuntos
Nanotubos de Carbono , Catálise , Cinética , Microscopia de Polarização , Nanotecnologia
6.
Sci Adv ; 5(5): eaat9459, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31236457

RESUMO

Recently, W-based catalysts have provided a promising route to synthesize single-walled carbon nanotubes (SWCNTs) with specific chirality, but the mechanism of the growth selectivity is vaguely understood. We propose a strategy to identify the atomic structure as well as the structure evolution of the Co-W-C ternary SWCNT catalyst. The key is to use a thin SiO2 film as the catalyst support and observation window. As the catalyst is uniformly prepared on this SiO2 film and directly used for the SWCNT synthesis, this method has an advantage over conventional methods: it creates an opportunity to obtain original, statistical, and dynamic understanding of the catalyst. As a technique, atomic-scale imaging directly on SiO2 serves as a powerful and versatile tool to investigate nanocrystals and high-temperature reactions; for the synthesis of SWCNTs, this work successfully visualizes the structure and evolution of the catalyst and illuminates the possible nucleation sites of the chirality-specific growth.

7.
Nanoscale ; 11(9): 4091-4100, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30785462

RESUMO

Recent advances in structural control during the synthesis of SWCNTs have in common the use of bimetallic nanoparticles as catalysts, despite the fact that their exact role is not fully understood. We therefore analyze the effect of the catalyst's chemical composition on the structure of the resulting SWCNTs by comparing three bimetallic catalysts (FeRu, CoRu and NiRu). A specific synthesis protocol is designed to impede the catalyst nanoparticle coalescence mechanisms and stabilize their diameter distributions throughout the growth. Owing to the ruthenium component which has a limited carbon solubility, tubes grow in tangential mode and their diameter is close to that of their seeding nanoparticles. By using the as-synthesized SWCNTs as a channel material infield effect transistors, we show how the chemical composition of the catalysts and temperature can be used as parameters to tune the diameter distribution and semiconducting-to-metallic ratio of SWCNT samples. Finally, a phenomenological model, based on the dependence of the carbon solubility as a function of catalyst nanoparticle size and nature of the alloying elements, is proposed to interpret the results.

8.
ACS Nano ; 12(12): 11756-11784, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30516055

RESUMO

Advances in the synthesis and scalable manufacturing of single-walled carbon nanotubes (SWCNTs) remain critical to realizing many important commercial applications. Here we review recent breakthroughs in the synthesis of SWCNTs and highlight key ongoing research areas and challenges. A few key applications that capitalize on the properties of SWCNTs are also reviewed with respect to the recent synthesis breakthroughs and ways in which synthesis science can enable advances in these applications. While the primary focus of this review is on the science framework of SWCNT growth, we draw connections to mechanisms underlying the synthesis of other 1D and 2D materials such as boron nitride nanotubes and graphene.

9.
Science ; 362(6411): 212-215, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30309950

RESUMO

Single-walled carbon nanotubes are hollow cylinders that can grow centimeters long via carbon incorporation at the interface with a catalyst. They display semiconducting or metallic characteristics, depending on their helicity, which is determined during their growth. To support the quest for a selective synthesis, we develop a thermodynamic model that relates the tube-catalyst interfacial energies, temperature, and the resulting tube chirality. We show that nanotubes can grow chiral because of the configurational entropy of their nanometer-sized edge, thus explaining experimentally observed temperature evolutions of chiral distributions. Taking the chemical nature of the catalyst into account through interfacial energies, we derive structural maps and phase diagrams that will guide a rational choice of a catalyst and growth parameters toward a better selectivity.

10.
Adv Mater ; 30(51): e1803777, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30318844

RESUMO

While solid-state materials are commonly classified as covalent, ionic, or metallic, there are cases that defy these iconic bonding mechanisms. Phase-change materials (PCMs) for data storage are a prominent example: they have been claimed to show "resonant bonding," but a clear definition of this mechanism has been lacking. Here, it is shown that these solids are fundamentally different from resonant bonding in the π-orbital systems of benzene and graphene, based on first-principles data for vibrational, optical, and polarizability properties. It is shown that PCMs and related materials exhibit a unique mechanism between covalent and metallic bonding. It is suggested that these materials be called "incipient metals," and their bonding nature "metavalent". Data for a diverse set of 58 materials show that metavalent bonding is not just a superposition of covalent and metallic cases, but instead gives rise to a unique and anomalous set of physical properties. This allows the derivation of a characteristic fingerprint of metavalent bonding, composed of five individual components and firmly rooted in physical properties. These findings are expected to accelerate the discovery and design of functional materials with attractive properties and applications, including nonvolatile memories, thermoelectrics, photonics, and quantum materials.

11.
Nanoscale ; 10(14): 6744-6750, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29589849

RESUMO

Chemical vapor deposition synthesis of single-walled carbon nanotubes, using an Fe catalyst, and alternating methane and carbon monoxide as carbon feedstocks, leads to the reversible formation of junctions between tubes of different diameters. Combined with an atomistic modeling of the tube/catalyst interface, this shows that the ratio of diameters of the tube and its seeding particle, denoting the growth mode, depends on the carbon fraction inside the catalyst. With carbon monoxide, nanoparticles are strongly carbon enriched, and tend to dewet the tube, in a perpendicular growth mode. Cross-checking our results with the available reports from the literature of the last decade strongly suggests that these latter conditions should favor the near armchair chiral selectivity observed empirically.

12.
Top Curr Chem (Cham) ; 375(3): 55, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28484989

RESUMO

More than 20 years after their discovery, our understanding of the growth mechanisms of single-wall carbon nanotubes is still incomplete, in spite of a large number of investigations motivated by potential rewards in many possible applications. Among the many techniques used to solve this challenging puzzle, computer simulations can directly address an atomic scale that is hardly accessible by other experiments, and thereby support or invalidate different ideas, assumptions, or models. In this paper, we review some aspects of the computer simulation and theoretical approaches dedicated to the study of single-wall carbon nanotube growth, and suggest some ways towards a better control of the synthesis processes by chemical vapor deposition.


Assuntos
Nanotubos de Carbono/química , Modelos Moleculares
13.
Chem Sci ; 8(12): 8325-8335, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29619179

RESUMO

The process by which organic matter decomposes deep underground to form petroleum and its underlying kerogen matrix has so far remained a no man's land to theoreticians, largely because of the geological (Myears) timescale associated with the process. Using reactive molecular dynamics and an accelerated simulation framework, the replica exchange molecular dynamics method, we simulate the full transformation of cellulose into kerogen and its associated fluid phase under prevailing geological conditions. We observe in sequence the fragmentation of the cellulose crystal and production of water, the development of an unsaturated aliphatic macromolecular phase and its aromatization. The composition of the solid residue along the maturation pathway strictly follows what is observed for natural type III kerogen and for artificially matured samples under confined conditions. After expulsion of the fluid phase, the obtained microporous kerogen possesses the structure, texture, density, porosity and stiffness observed for mature type III kerogen and a microporous carbon obtained by saccharose pyrolysis at low temperature. As expected for this variety of precursor, the main resulting hydrocarbon is methane. The present work thus demonstrates that molecular simulations can now be used to assess, almost quantitatively, such complex chemical processes as petrogenesis in fossil reservoirs and, more generally, the possible conversion of any natural product into bio-sourced materials and/or fuel.

14.
Nanoscale ; 7(47): 20284-9, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26580292

RESUMO

Elucidating the roles played by carbon solubility in catalyst nanoparticles is required to better understand the growth mechanisms of single-walled carbon nanotubes (SWNTs). Here, we highlight that controlling the level of dissolved carbon is of key importance to enable nucleation and growth. We first performed tight binding based atomistic computer simulations to study carbon incorporation in metal nanoparticles with low solubilities. For such metals, carbon incorporation strongly depends on their structures (face centered cubic or icosahedral), leading to different amounts of carbon close to the nanoparticle surface. Following this idea, we then show experimentally that Au nanoparticles effectively catalyze SWNT growth when in a face centered cubic structure, and fail to do so when icosahedral. Both approaches emphasize that the presence of subsurface carbon in the nanoparticles is necessary to enable the cap lift-off, making the nucleation of SWNTs possible.

15.
Nat Commun ; 6: 7467, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26105012

RESUMO

Aging is a ubiquitous phenomenon in glasses. In the case of phase-change materials, it leads to a drift in the electrical resistance, which hinders the development of ultrahigh density storage devices. Here we elucidate the aging process in amorphous GeTe, a prototypical phase-change material, by advanced numerical simulations, photothermal deflection spectroscopy and impedance spectroscopy experiments. We show that aging is accompanied by a progressive change of the local chemical order towards the crystalline one. Yet, the glass evolves towards a covalent amorphous network with increasing Peierls distortion, whose structural and electronic properties drift away from those of the resonantly bonded crystal. This behaviour sets phase-change materials apart from conventional glass-forming systems, which display the same local structure and bonding in both phases.

16.
Phys Rev Lett ; 114(12): 125502, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25860757

RESUMO

Understanding the composition dependence of the hardness in materials is of primary importance for infrastructures and handled devices. Stimulated by the need for stronger protective screens, topological constraint theory has recently been used to predict the hardness in glasses. Herein, we report that the concept of rigidity transition can be extended to a broader range of materials than just glass. We show that hardness depends linearly on the number of angular constraints, which, compared to radial interactions, constitute the weaker ones acting between the atoms. This leads to a predictive model for hardness, generally applicable to any crystalline or glassy material.

17.
J Am Chem Soc ; 136(39): 13698-708, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25188018

RESUMO

The dynamics of the graphene-catalyst interaction during chemical vapor deposition are investigated using in situ, time- and depth-resolved X-ray photoelectron spectroscopy, and complementary grand canonical Monte Carlo simulations coupled to a tight-binding model. We thereby reveal the interdependency of the distribution of carbon close to the catalyst surface and the strength of the graphene-catalyst interaction. The strong interaction of epitaxial graphene with Ni(111) causes a depletion of dissolved carbon close to the catalyst surface, which prevents additional layer formation leading to a self-limiting graphene growth behavior for low exposure pressures (10(-6)-10(-3) mbar). A further hydrocarbon pressure increase (to ∼10(-1) mbar) leads to weakening of the graphene-Ni(111) interaction accompanied by additional graphene layer formation, mediated by an increased concentration of near-surface dissolved carbon. We show that growth of more weakly adhered, rotated graphene on Ni(111) is linked to an initially higher level of near-surface carbon compared to the case of epitaxial graphene growth. The key implications of these results for graphene growth control and their relevance to carbon nanotube growth are highlighted in the context of existing literature.

18.
Nanoscale ; 5(15): 6662-76, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23774798

RESUMO

We discuss the synthesis of carbon nanotubes (CNTs) and graphene by catalytic chemical vapour deposition (CCVD) and plasma-enhanced CVD (PECVD), summarising the state-of-the-art understanding of mechanisms controlling their growth rate, chiral angle, number of layers (walls), diameter, length and quality (defects), before presenting a new model for 2D nucleation of a graphene sheet from amorphous carbon on a nickel surface. Although many groups have modelled this process using a variety of techniques, we ask whether there are any complementary ideas emerging from the different proposed growth mechanisms, and whether different modelling techniques can give the same answers for a given mechanism. Subsequently, by comparing the results of tight-binding, semi-empirical molecular orbital theory and reactive bond order force field calculations, we demonstrate that graphene on crystalline Ni(111) is thermodynamically stable with respect to the corresponding amorphous metal and carbon structures. Finally, we show in principle how a complementary heterogeneous nucleation step may play a key role in the transformation from amorphous carbon to graphene on the metal surface. We conclude that achieving the conditions under which this complementary crystallisation process can occur may be a promising method to gain better control over the growth processes of both graphene from flat metal surfaces and CNTs from catalyst nanoparticles.

20.
ACS Nano ; 4(10): 6114-20, 2010 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-20929241

RESUMO

The healing of graphene grown from a metallic substrate is investigated using tight-binding Monte Carlo simulations. At temperatures (ranging from 1000 to 2500 K), an isolated graphene sheet can anneal a large number of defects suggesting that their healings are thermally activated. We show that in the presence of a nickel substrate we obtain a perfect graphene layer. The nickel-carbon chemical bonds keep breaking and reforming around defected carbon zones, providing a direct interaction, necessary for the healing. Thus, the action of Ni atoms is found to play a key role in the reconstruction of the graphene sheet by annealing defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...