Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(9): 107558, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664623

RESUMO

LINC00116 encodes a microprotein first identified as Mitoregulin (MTLN), where it was reported to localize to the inner membrane of mitochondria to regulate fatty acid oxidation and oxidative phosphorylation. These initial discoveries were followed by reports with differing findings about its molecular functions and submitochondrial localization. To clarify the apparent discrepancies, we constructed multiple orthogonal methods of determining the localization of MTLN, including split GFP-based reporters that enable efficient and reliable topology analyses for microproteins. These methods unequivocally demonstrate MTLN primarily localizes to the outer membrane of mitochondria, where it interacts with enzymes of fatty acid metabolism including CPT1B and CYB5B. Loss of MTLN causes the accumulation of very long-chain fatty acids (VLCFAs), especially docosahexaenoic acid (DHA). Intriguingly, loss of MTLN protects mice against western diet/fructose-induced insulin-resistance, suggests a protective effect of VLCFAs in this context. MTLN thus serves as an attractive target to control the catabolism of VLCFAs.

2.
PLoS One ; 18(6): e0287204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363910

RESUMO

Tarsal joint abnormalities have been observed in aged male mice on a C57BL background. This joint disease consists of calcaneal displacement, inflammation, and proliferation of cartilage and connective tissue, that can progress to ankylosis of the joint. While tarsal pathology has been described previously in C57BL/6N substrains, as well as in STR/ort and B10.BR strain, no current literature describes this disease occurring in C57BL/6J mice. More importantly the behavioral features that may result from such a change to the joint have yet to be evaluated. This condition was observed in older male mice of the C57BL/6J lineage, around the age of 20 weeks or older, at a frequency of 1% of the population. To assess potential phenotypic sequela, this study sought to evaluate body weight, frailty assessment, home cage wheel running, dynamic weight bearing, and mechanical allodynia with and without the presence of pain relief with morphine. Overall mice with tarsal injuries had significantly higher frailty scores (p< 0.05) and weighed less (p<0.01) compared to unaffected mice. Affected mice had greater overall touch sensitivity (p<0.05) and they placed more weight on their forelimbs (p<0.01) compared to their hind limbs. Lastly, when housed with a running wheel, affected mice ran for a shorter length of time (p<0.01) but tended to run a greater distance within the time they did run (p<0.01) compared to unaffected mice. When tested just after being given morphine, the affected mice performed more similarly to unaffected mice, suggesting there is a pain sensation to this disease process. This highlights the importance of further characterizing inbred mouse mutations, as they may impact research programs or specific study goals.


Assuntos
Fragilidade , Atividade Motora , Camundongos , Masculino , Animais , Camundongos Endogâmicos C57BL , Morfina , Dor
3.
J Immunol ; 205(8): 2026-2038, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32938729

RESUMO

It has become increasingly appreciated that autoimmune responses against neuronal components play an important role in type 1 diabetes (T1D) pathogenesis. In fact, a large proportion of islet-infiltrating B lymphocytes in the NOD mouse model of T1D produce Abs directed against the neuronal type III intermediate filament protein peripherin. NOD-PerIg mice are a previously developed BCR-transgenic model in which virtually all B lymphocytes express the H and L chain Ig molecules from the intra-islet-derived anti-peripherin-reactive hybridoma H280. NOD-PerIg mice have accelerated T1D development, and PerIg B lymphocytes actively proliferate within islets and expand cognitively interactive pathogenic T cells from a pool of naive precursors. We now report adoptively transferred T cells or whole splenocytes from NOD-PerIg mice expectedly induce T1D in NOD.scid recipients but, depending on the kinetics of disease development, can also elicit a peripheral neuritis (with secondary myositis). This neuritis was predominantly composed of CD4+ and CD8+ T cells. Ab depletion studies showed neuritis still developed in the absence of NOD-PerIg CD8+ T cells but required CD4+ T cells. Surprisingly, sciatic nerve-infiltrating CD4+ cells had an expansion of IFN-γ- and TNF-α- double-negative cells compared with those within both islets and spleen. Nerve and islet-infiltrating CD4+ T cells also differed by expression patterns of CD95, PD-1, and Tim-3. Further studies found transitory early B lymphocyte depletion delayed T1D onset in a portion of NOD-PerIg mice, allowing them to survive long enough to develop neuritis outside of the transfer setting. Together, this study presents a new model of peripherin-reactive B lymphocyte-dependent autoimmune neuritis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Tecido Nervoso , Neurite Autoimune Experimental , Pâncreas , Animais , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Tecido Nervoso/imunologia , Tecido Nervoso/patologia , Neurite Autoimune Experimental/genética , Neurite Autoimune Experimental/imunologia , Neurite Autoimune Experimental/patologia , Pâncreas/imunologia , Pâncreas/patologia
4.
Aging Cell ; 16(2): 281-292, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27995769

RESUMO

Multiple loss-of-function mutations in TRIAD3 (a.k.a. RNF216) have recently been identified in patients suffering from Gordon Holmes syndrome (GHS), characterized by cognitive decline, dementia, and movement disorders. TRIAD3A is an E3 ubiquitin ligase that recognizes and facilitates the ubiquitination of its target for degradation by the ubiquitin-proteasome system (UPS). Here, we demonstrate that two of these missense substitutions in TRIAD3 (R660C and R694C) could not regulate the degradation of their neuronal target, activity-regulated cytoskeletal-associated protein (Arc/Arg 3.1), whose expression is critical for synaptic plasticity and memory. The synaptic deficits due to the loss of endogenous TRIAD3A could not be rescued by TRIAD3A harboring GHS-associated missense mutations. Moreover, we demonstrate that the loss of endogenous TRIAD3A in the mouse hippocampal CA1 region led to deficits in spatial learning and memory. Finally, we show that these missense mutations abolished the interaction of TRIAD3A with Arc, disrupting Arc ubiquitination, and consequently Arc degradation. Our current findings of Arc misregulation by TRIAD3A variants suggest that loss-of-function mutations in TRIAD3A may contribute to dementia observed in patients with GHS driven by dysfunctional UPS components, leading to cognitive impairments through the synaptic protein Arc.


Assuntos
Ataxia Cerebelar/genética , Disfunção Cognitiva/patologia , Proteínas do Citoesqueleto/metabolismo , Hormônio Liberador de Gonadotropina/deficiência , Hipogonadismo/genética , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Sinapses/patologia , Ubiquitina-Proteína Ligases/genética , Animais , Região CA1 Hipocampal/patologia , Clatrina/metabolismo , Disfunção Cognitiva/metabolismo , Endocitose , Técnicas de Silenciamento de Genes , Hormônio Liberador de Gonadotropina/genética , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto/genética , Ligação Proteica , Proteólise , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Memória Espacial , Sinapses/metabolismo , Transmissão Sináptica , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
5.
Biol Chem ; 397(6): 541-54, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26894577

RESUMO

Mutations in the gene coding for the multi-domain protein leucine-rich repeat kinase 2 (LRRK2) are the leading cause of genetically inherited Parkinson's disease (PD). Two of the common found mutations are the R1441C and G2019S. In this study we identified protein phosphatase 2A (PP2A) as an interacting partner of LRRK2. We were able to demonstrate that the Ras of complex protein (ROC) domain is sufficient to interact with the three subunits of PP2A in human neuroblastoma SH-SY5Y cells and in HeLa cells. The alpha subunit of PP2A is interacting with LRRK2 in the perinuclear region of HeLa cells. Silencing the catalytic subunit of PP2A by shRNA aggravated cellular degeneration induced by the pathogenic R1441C-LRRK2 mutant expressed in neuroblastoma SH-SY5Y cells. A similar enhancement of apoptotic nuclei was observed by downregulation of the catalytic subunit of PP2A in cultured cortical cells derived from neurons overexpressing the pathogenic mutant G2019S-LRRK2. Conversely, pharmacological activation of PP2A by sodium selenate showed a partial neuroprotection from R1441C-LRRK2-induced cellular degeneration. All these data suggest that PP2A is a new interacting partner of LRRK2 and reveal the importance of PP2A as a potential therapeutic target in PD.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteína Fosfatase 2/metabolismo , Domínio Catalítico , Morte Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/química , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ligação Proteica , Proteína Fosfatase 2/química , Proteína Fosfatase 2/deficiência , Proteína Fosfatase 2/genética , Ácido Selênico/farmacologia
6.
Front Behav Neurosci ; 9: 180, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26236206

RESUMO

Recent findings point to a central role of the endoplasmic reticulum-resident STIM (Stromal Interaction Molecule) proteins in shaping the structure and function of excitatory synapses in the mammalian brain. The impact of the Stim genes on cognitive functions remains, however, poorly understood. To explore the function of the Stim genes in learning and memory, we generated three mouse strains with conditional deletion (cKO) of Stim1 and/or Stim2 in the forebrain. Stim1, Stim2, and double Stim1/Stim2 cKO mice show no obvious brain structural defects or locomotor impairment. Analysis of spatial reference memory in the Morris water maze revealed a mild learning delay in Stim1 cKO mice, while learning and memory in Stim2 cKO mice was indistinguishable from their control littermates. Deletion of both Stim genes in the forebrain resulted, however, in a pronounced impairment in spatial learning and memory reflecting a synergistic effect of the Stim genes on the underlying neural circuits. Notably, long-term potentiation (LTP) at CA3-CA1 hippocampal synapses was markedly enhanced in Stim1/Stim2 cKO mice and was associated with increased phosphorylation of the AMPA receptor subunit GluA1, the transcriptional regulator CREB and the L-type Voltage-dependent Ca(2+) channel Cav1.2 on protein kinase A (PKA) sites. We conclude that STIM1 and STIM2 are key regulators of PKA signaling and synaptic plasticity in neural circuits encoding spatial memory. Our findings also reveal an inverse correlation between LTP and spatial learning/memory and suggest that abnormal enhancement of cAMP/PKA signaling and synaptic efficacy disrupts the formation of new memories.

7.
Front Behav Neurosci ; 9: 158, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26157370

RESUMO

Attempts have been made to use glycogen synthase kinase-3 beta (GSK3ß) inhibitors for prophylactic treatment of neurocognitive conditions. However the use of lithium, a non-specific inhibitor of GSK3ß results in mild cognitive impairment in humans. The effects of global GSK3ß inhibition or knockout on learning and memory in healthy adult mice are also inconclusive. Our study aims to better understand the role of GSK3ß in learning and memory through a more regionally, targeted approach, specifically performing lentiviral-mediated knockdown of GSK3ß within the dentate gyrus (DG). DG-GSK3ß-silenced mice showed impaired contextual fear memory retrieval. However, cue fear memory, spatial memory, locomotor activity and anxiety levels were similar to control. These GSK3ß-silenced mice also showed increased induction and maintenance of DG long-term potentiation (DG-LTP) compared to control animals. Thus, this region-specific, targeted knockdown of GSK3ß in the DG provides better understanding on the role of GSK3ß in learning and memory.

8.
PLoS One ; 8(7): e70249, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936174

RESUMO

BACKGROUND: Non-motor symptoms are increasingly recognized as important features of Parkinson's disease (PD). LRRK2 mutations are common causes of familial and sporadic PD. Non-motor features have not been yet comprehensively evaluated in LRRK2 transgenic mouse models. OBJECTIVE: Using a transgenic mouse model overexpressing the R1441G mutation of the human LRRK2 gene, we have investigated the longitudinal correlation between motor and non-motor symptoms and determined if specific non-motor phenotypes precede motor symptoms. METHODOLOGY: We investigated the onset of motor and non-motor phenotypes on the LRRK2(R1441G) BAC transgenic mice and their littermate controls from 4 to 21 month-old using a battery of behavioral tests. The transgenic mutant mice displayed mild hypokinesia in the open field from 16 months old, with gastrointestinal dysfunctions beginning at 6 months old. Non-motor features such as depression and anxiety-like behaviors, sensorial functions (pain sensitivity and olfaction), and learning and memory abilities in the passive avoidance test were similar in the transgenic animals compared to littermate controls. CONCLUSIONS: LRRK2(R1441G) BAC transgenic mice displayed gastrointestinal dysfunction at an early stage but did not have abnormalities in fine behaviors, olfaction, pain sensitivity, mood disorders and learning and memory compared to non-transgenic littermate controls. The observations on olfaction and gastrointestinal dysfunction in this model validate findings in human carriers. These mice did recapitulate mild Parkinsonian motor features at late stages but compensatory mechanisms modulating the progression of PD in these models should be further evaluated.


Assuntos
Comportamento Animal , Atividade Motora/genética , Proteínas Serina-Treonina Quinases/genética , Fatores Etários , Animais , Ansiedade/genética , Depressão/genética , Modelos Animais de Doenças , Gastroenteropatias/genética , Gastroenteropatias/fisiopatologia , Expressão Gênica , Aprendizagem , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologia , Fenótipo
9.
Front Neurosci ; 5: 18, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21427796

RESUMO

Hippocampal neurogenesis in the adult mammalian brain is modulated by various signals like growth factors, hormones, neuropeptides, and neurotransmitters. All of these factors can (but not necessarily do) converge on the activation of the G protein Ras. We used a transgenic mouse model (synRas mice) expressing constitutively activated G12V-Harvey Ras selectively in differentiated neurons to investigate the possible effects onto neurogenesis. H-Ras activation in neurons attenuates hippocampal precursor cell generation at an early stage of the proliferative cascade before neuronal lineage determination occurs. Therefore it is unlikely that the transgenically activated H-Ras in neurons mediates this effect by a direct, intracellular signaling mechanism. Voluntary exercise restores neurogenesis up to wild type level presumably mediated by brain-derived neurotrophic factor. Reduced neurogenesis is linked to impairments in spatial short-term memory and object recognition, the latter can be rescued by voluntary exercise, as well. These data support the view that new cells significantly increase complexity that can be processed by the hippocampal network when experience requires high demands to associate stimuli over time and/or space.

10.
Front Behav Neurosci ; 3: 34, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20204139

RESUMO

Running is a potent stimulator of cell proliferation in the adult dentate gyrus and these newly generated hippocampal neurons seem to be implicated in memory functions. Here we have used a mouse model expressing activated Ras under the direction of the neuronal Synapsin I promoter (named synRas mice). These mice develop down-regulated proliferation of adult hippocampal precursor cells and show decreased short-term recognition memory performances. Voluntary physical activity reversed the genetically blocked generation of hippocampal proliferating cells and enhanced the dendritic arborisation of the resulting doublecortin newly generated neurons. Moreover, running improved novelty recognition in both wild type and synRas littermates, compensating their memory deficits. Brain-derived neurotrophic factor (BDNF) has been proposed to be a potential mediator of physical exercise acting in the hippocampus on dentate neurons and their precursors. This was confirmed here by the identification of doublecortin-immunoreactive cells expressing tyrosine receptor kinase B BDNF receptor. While no difference in BDNF levels were detected in basal conditions between the synRas mice and their wild type littermates, running was associated with enhanced BDNF expression levels. Thus increased BDNF signalling is a candidate mechanism to explain the observed effects of running. Our studies demonstrate that voluntary physical activity has a robust beneficial effect even in mice with genetically restricted neurogenesis and cognition.

11.
Cereb Cortex ; 20(8): 1769-79, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19892785

RESUMO

The oligodendrocyte myelin glycoprotein is a glycosylphosphatidylinositol-anchored protein expressed by neurons and oligodendrocytes in the central nervous system. Attempts have been made to identify the functions of the myelin-associated inhibitory proteins (MAIPs) after axonal lesion or in neurodegeneration. However, the developmental roles of some of these proteins and their receptors remain elusive. Recent studies indicate that NgR1 and the recently discovered receptor PirB restrict cortical synaptic plasticity. However, the putative factors that trigger these effects are unknown. Because Nogo-A is mostly associated with the endoplasmic reticulum and myelin associated glycoprotein appears late during development, the putative participation of OMgp should be considered. Here, we examine the pattern of development of OMgp immunoreactive elements during mouse telencephalic development. OMgp immunoreactivity in the developing cortex follows the establishment of the thalamo-cortical barrel field. At the cellular level, we located OMgp neuronal membranes in dendrites and axons as well as in brain synaptosome fractions and axon varicosities. Lastly, the analysis of the barrel field in OMgp-deficient mice revealed that although thalamo-cortical connections were formed, their targeting in layer IV was altered, and numerous axons ectopically invaded layers II-III. Our data support the idea that early expressed MAIPs play an active role during development and point to OMgp participating in thalamo-cortical connections.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Glicoproteína Associada a Mielina/biossíntese , Glicoproteína Associada a Mielina/genética , Telencéfalo/metabolismo , Animais , Mapeamento Encefálico , Diferenciação Celular/genética , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Proteínas Ligadas por GPI , Cones de Crescimento/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Proteínas da Mielina , Glicoproteína Associada a Mielina/deficiência , Glicoproteína Mielina-Oligodendrócito , Fibras Nervosas Mielinizadas/metabolismo , Vias Neurais/embriologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/metabolismo , Ratos , Ratos Sprague-Dawley , Córtex Somatossensorial/citologia , Córtex Somatossensorial/embriologia , Córtex Somatossensorial/metabolismo , Telencéfalo/citologia , Telencéfalo/embriologia , Tálamo/citologia , Tálamo/embriologia , Tálamo/metabolismo
12.
Physiol Genomics ; 33(2): 230-9, 2008 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-18303085

RESUMO

Congenital heart defects (CHD) are common in Down syndrome (DS, trisomy 21). Recently, cardiac sympathetic-parasympathetic imbalance has also been documented in DS adults free of any CHD. The KCNJ6 gene located on human chromosome 21 encodes for the Kir3.2/GIRK2 protein subunits of G protein-regulated K(+) (K(G)) channels and could contribute to this altered cardiac regulation. To elucidate the role of its overexpression, we used homozygous transgenic (Tg(+/+)) mice carrying copies of human KCNJ6. These mice showed human Kir3.2 mRNA expression in the heart and a 2.5-fold increased translation in the atria. Phenotypic alterations were assessed by recording electrocardiogram of urethane anesthetized mice. Chronotropic responses to direct (carbachol) and indirect (methoxamine) muscarinic stimulation were enhanced in Tg(+/+) mice with respect to wild-type (WT) mice. Alternating periods of slow and fast rhythm induced by CCPA (2-chloro-N-cyclopentyl-adenosine) were amplified in Tg(+/+) mice, resulting in a reduced negative chronotropic effect. These drugs reduced the atrial P wave amplitude and area. P wave variations induced by methoxamine and CCPA were respectively increased and reduced in the Tg(+/+) mice, while PR interval and ventricular wave showed no difference between Tg(+/+) and WT. These results indicate that Tg(+/+) mice incorporating the human KCNJ6 exhibit altered Kir3.2 expression and responses to drugs that would activate K(G) channels. Moreover, these altered expression and responses are limited to sino-atrial node and atria that normally express large amounts of K(G) channels. These data suggest that KCNJ6 could play an important role in altered cardiac regulation in DS patients.


Assuntos
Cromossomos Humanos Par 21/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Frequência Cardíaca , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Carbacol/farmacologia , Eletrocardiografia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/biossíntese , Frequência Cardíaca/efeitos dos fármacos , Humanos , Metoxamina/farmacologia , Camundongos , Camundongos Transgênicos , Miocárdio/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos
13.
Behav Genet ; 36(3): 377-86, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16514474

RESUMO

Trisomy 21 occurs every 1/800 births and is the most frequent genetic cause of mental retardation. Children with trisomy 21 show delayed sensorial and motor development as well as cognitive disorders. We selected a mouse model of trisomy 21 (TRS21): transgenic mice carrying extra copies of a HSA21 region corresponding to the D21S17-ETS2 region (previously referred to as "Down syndrome critical region 1"). Sensorial and motor development was measured in these partially transgenic mice, from birth to weaning. The four HSA21 regions contributed unequally to sensorial and motor development delay. The more centromeric region (230E8) modified 4 of the development indicators plus the size of the effect, indicated by partial eta(2)(eta(p)(2), reached a median value of 14.5%. The neighboring 141G6 region contributed to 5 developmental differences (eta(p)(2) median value 14%). The most telomeric region (285E6) only modified one development indicator. An extra copy of an HSA21 fragment (referred to here as the 152F7 region) induced modifications to 14 of the 18 indicators measured with a eta(2) median value reaching 20%. The results indicate a noticeable contribution of the 152F7 region to sensorial and motor development. The contribution of this region to cognitive functioning and its neurobiological basis has been already reported. This set of result suggests the location in the D21S17-ETS2 region of several genes playing crucial role in cognitive and developmental impairment observed in TRS21.


Assuntos
Envelhecimento/fisiologia , Mapeamento Cromossômico , Síndrome de Down/genética , Atividade Motora/fisiologia , Animais , Criança , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Modelos Animais de Doenças , Crescimento , Humanos , Camundongos , Camundongos Transgênicos , Desmame
14.
Behav Genet ; 35(3): 333-41, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15864448

RESUMO

The association between atypical laterality and mental retardation has been reported several times, particularly in Down syndrome (DS). We investigated common genetic correlates of these components of the syndrome, examining direction (number of right paw entries in the Collins test) and degree (absolute difference between the number of right paw entries and the number of left paw entries) in mice that had incorporated extra-contiguous HSA21 fragments covering DCR-1 (Down Chromosomal Region-1). As corpus callosum size is substantially reduced in DS, and as the structure has been suspected of playing a role in atypical laterality, we also measured the corpus callosum in these mice. Extra copies of two regions (F7 and E6) have been associated with an atypical degree of laterality (strongly reduced degree). Extra copies of E8, G6 and E6 are also linked to the reduced size of the corpus callosum, indicating that the abnormal number of fibers linking the two hemispheres is not associated with atypical laterality in DS. Together, these results indicate that some of the genes involved in atypical laterality and in the reduced size of the corpus callosum in DS are present on DCR-1. An extra copy of F7 and, to a lesser extent, an extra copy of E6, are also associated with cognitive impairment. These results support the hypothesis of common genetic correlates in atypical laterality and mental retardation in DS.


Assuntos
Mapeamento Cromossômico , Corpo Caloso/anatomia & histologia , Síndrome de Down/genética , Animais , Corpo Caloso/patologia , Modelos Animais de Doenças , Lateralidade Funcional , Marcadores Genéticos , Masculino , Camundongos
15.
J Neuropathol Exp Neurol ; 63(5): 429-40, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15198122

RESUMO

Down syndrome is the most frequent genetic cause of mental retardation, having an incidence of 1 in 700 live births. In the present study we used a transgenic mouse in vivo library consisting of 4 yeast artificial chromosome (YAC) transgenic mouse lines, each bearing a different fragment of the Down syndrome critical region 1 (DCR-1), implicated in brain abnormalities characterizing this pathology. The 152F7 fragment, in addition to genes also located on the other DCR-1 fragments, bears the DYRK1A gene, encoding for a serine-threonine kinase. The neurobehavioral analysis of these mouse lines showed that DYRK1A overexpressing 152F7 mice but not the other lines display learning impairment and hyperactivity during development. Additionally, 152F7 mice display increased brain weight and neuronal size. At a biochemical level we found DYRK1A overexpression associated with a development-dependent increase in phosphorylation of the transcription factor FKHR and with high levels of cyclin B1, suggesting for the first time in vivo a correlation between DYRK1A overexpression and cell cycle protein alteration. In addition, we found an altered phosphorylation of transcription factors of CREB family. Our findings support a role of DYRK1A overexpression in the neuronal abnormalities seen in Down syndrome and suggest that this pathology is linked to altered levels of proteins involved in the regulation of cell cycle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Síndrome de Down/genética , Biblioteca Genômica , Proteínas Musculares/metabolismo , Malformações do Sistema Nervoso/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas , Animais , Proteínas de Ciclo Celular/genética , Tamanho Celular/genética , Aberrações Cromossômicas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclina B/metabolismo , Ciclina B1 , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Síndrome de Down/metabolismo , Síndrome de Down/fisiopatologia , Feminino , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead , Humanos , Hipercinese/genética , Hipercinese/metabolismo , Hipercinese/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular , Deficiências da Aprendizagem/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Musculares/genética , Mutação/genética , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/fisiopatologia , Tamanho do Órgão/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Fatores de Transcrição/metabolismo , Regulação para Cima/genética , Quinases Dyrk
16.
Neurosci Biobehav Rev ; 27(1-2): 141-53, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12732230

RESUMO

About 2-3% of all children are affected by mental retardation, and genetic conditions rank among the leading causes of mental retardation. Alterations in the information encoded by genes that regulate critical steps of brain development can disrupt the normal course of development, and have profound consequences on mental processes. Genetically modified mouse models have helped to elucidate the contribution of specific gene alterations and gene-environment interactions to the phenotype of several forms of mental retardation. Mouse models of several neurodevelopmental pathologies, such as Down and Rett syndromes and X-linked forms of mental retardation, have been developed. Because behavior is the ultimate output of brain, behavioral phenotyping of these models provides functional information that may not be detectable using molecular, cellular or histological evaluations. In particular, the study of ontogeny of behavior is recommended in mouse models of disorders having a developmental onset. Identifying the role of specific genes in neuropathologies provides a framework in which to understand key stages of human brain development, and provides a target for potential therapeutic intervention.


Assuntos
Encéfalo/crescimento & desenvolvimento , Cognição/fisiologia , Modelos Animais de Doenças , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Animais , Animais Geneticamente Modificados/crescimento & desenvolvimento , Comportamento/fisiologia , Comportamento Animal , Meio Ambiente , Genes , Doenças Genéticas Inatas/fisiopatologia , Humanos , Deficiência Intelectual/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...