Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 22(7): 3060-3068, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34110127

RESUMO

Heating bleached kraft pulps treated with poly(ethylene-alt-maleic acid) (PEMAc) can lead to high yields of carboxylated polymer grafted to fibers. However, in many cases, the cured, dry pulp cannot be effectively repulped (redispersed in water) because the wet strength is too high. Impregnation with PEMAc solutions at pH 4 followed by high temperature (120-180 °C), catalyst-free curing for short times can give fixation yields >85% while maintaining repulpability. The combination of high fixation yields with low wet strength is possible because the extent of curing required for high grafting yields is less than the curing requirement for high wet strength. Two challenges in moving this technology to practicable applications are (1) identifying the optimum laboratory pulp curing conditions and (2) translating laboratory curing conditions to industrial processes. A modeling tool was developed to meet these challenges. The model is based on the observation that for curing conditions giving high fixation yields the wet tensile indices of grafted pulp sheets showed a power-law dependence on the ßΓ product where ß is the conversion of the succinic acid moieties in PEMAc to the corresponding succinic anhydride groups in the curing step and Γ is the amount of polymer applied to the pulp. For two PEMAc molecular weights and two pulp types, the power-law slopes were 0.6; however, the pre-exponential terms depended upon the specific polymer and pulp type combination. We propose that the relationships between the wet tensile index and ßΓ, from polymer-treated, laboratory pulp handsheets, can be used to predict if proposed curing conditions for larger-scale processes will produce a repulpable product.


Assuntos
Polietileno , Madeira , Etilenos , Maleatos
2.
Anal Bioanal Chem ; 412(30): 8401-8415, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33106946

RESUMO

Process-monitoring laboratories in the pulp and paper industry generally use a combination of wet chemical analyses and physical measurements to certify the fitness of a production pulp for a specific end-use. These laboratory tests require time and the effort of trained personnel, limiting their utility for real-time process control. Here we show that Raman probes of unrefined cellulosic pulps, well-suited to the online measurement of in-process materials, can predict the quality attributes of manufactured papers. The accuracy of prediction improves when the covariance is modelled in a reduced measurement space selected by a data-driven, feature-selection technique referred to as a Template Oriented Genetic Algorithm (TOGA). TOGA, combined with discrete wavelet transform (DWT), isolates functional-group features that correlate best with mechanical properties paper derived from refined pulp. Paper makers refine market pulps to build sheet strength using a beating process that decreases freeness as it increases fibre-fibre bonding. Methods demonstrated here predict manufactured sheet properties obtainable after any specified degree of refining from the Raman spectrum of an unrefined pulp. This analysis capacity will enable both vendors of market pulp and makers of sheet paper to specify in advance the amount of beating required to produce a desired product, thereby saving cost and conserving resources.

3.
Genetics ; 188(1): 197-214, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21385726

RESUMO

Marker-assisted selection holds promise for highly influencing tree breeding, especially for wood traits, by considerably reducing breeding cycles and increasing selection accuracy. In this study, we used a candidate gene approach to test for associations between 944 single-nucleotide polymorphism markers from 549 candidate genes and 25 wood quality traits in white spruce. A mixed-linear model approach, including a weak but nonsignificant population structure, was implemented for each marker-trait combination. Relatedness among individuals was controlled using a kinship matrix estimated either from the known half-sib structure or from the markers. Both additive and dominance effect models were tested. Between 8 and 21 single-nucleotide polymorphisms (SNPs) were found to be significantly associated (P ≤ 0.01) with each of earlywood, latewood, or total wood traits. After controlling for multiple testing (Q ≤ 0.10), 13 SNPs were still significant across as many genes belonging to different families, each accounting for between 3 and 5% of the phenotypic variance in 10 wood characters. Transcript accumulation was determined for genes containing SNPs associated with these traits. Significantly different transcript levels (P ≤ 0.05) were found among the SNP genotypes of a 1-aminocyclopropane-1-carboxylate oxidase, a ß-tonoplast intrinsic protein, and a long-chain acyl-CoA synthetase 9. These results should contribute toward the development of efficient marker-assisted selection in an economically important tree species.


Assuntos
Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Picea/genética , Característica Quantitativa Herdável , Madeira/genética , Análise por Conglomerados , Perfilação da Expressão Gênica , Genes de Plantas/genética , Genótipo , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Dinâmica Populacional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Appl Environ Microbiol ; 54(1): 50-54, 1988 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16347538

RESUMO

The induction of xylose reductase and xylitol dehydrogenase activities on mixed sugars was investigated in the yeasts Pachysolen tannophilus and Pichia stipitis. Enzyme activities induced on d-xylose served as the controls. In both yeasts, d-glucose, d-mannose, and 2-deoxyglucose inhibited enzyme induction by d-xylose to various degrees. Cellobiose, l-arabinose, and d-galactose were not inhibitory. In liquid batch culture, P. tannophilus utilized d-glucose and d-mannose rapidly and preferentially over d-xylose, while d-galactose consumption was poor and lagged behind that of the pentose sugar. In P. stipitis, all three hexoses were used preferentially over d-xylose. The results showed that the repressibility of xylose reductase and xylitol dehydrogenase may limit the potential of yeast fermentation of pentose sugars in hydrolysates of lignocellulosic substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA