Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
2.
medRxiv ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39371150

RESUMO

Gene-gene (GxG) interactions play an important role in human genetics, potentially explaining part of the "missing heritability" of polygenic traits and the variable expressivity of monogenic traits. Many GxG interactions have been identified in model organisms through experimental breeding studies, but they have been difficult to identify in human populations. To address this challenge, we applied two complementary variance QTL (vQTL)-based approaches to identify GxG interactions that contribute to human blood traits and blood-related disease risk. First, we used the previously validated genome-wide scale test for each trait in ∼450,000 people in the UK Biobank and identified 4 vQTLs. Genome-wide GxG interaction testing of these vQTLs enabled discovery of novel interactions between (1) CCL24 and CCL26 for eosinophil count and plasma CCL24 and CCL26 protein levels and (2) HLA-DQA1 and HLA-DQB1 for lymphocyte count and risk of celiac disease, both of which replicated in ∼140,000 NIH All of Us and ∼70,000 Vanderbilt BioVU participants. Second, we used a biologically informed approach to search for vQTL in disease-relevant genes. This approach identified (1) a known interaction for hemoglobin between two pathogenic variants in HFE which cause hereditary hemochromatosis and alters risk of cirrhosis and (2) a novel interaction between the JAK2 46/1 haplotype and a variant on chromosome 14 which modifies platelet count, JAK2 V617F clonal hematopoiesis, and risk of polycythemia vera. This work identifies novel disease-relevant GxG interactions and demonstrates the utility of vQTL-based approaches in identifying GxG interactions relevant to human health at scale.

4.
medRxiv ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39228737

RESUMO

Clonal hematopoiesis (CH) is defined by the expansion of a lineage of genetically identical cells in blood. Genetic lesions that confer a fitness advantage, such as point mutations or mosaic chromosomal alterations (mCAs) in genes associated with hematologic malignancy, are frequent mediators of CH. However, recent analyses of both single cell-derived colonies of hematopoietic cells and population sequencing cohorts have revealed CH frequently occurs in the absence of known driver genetic lesions. To characterize CH without known driver genetic lesions, we used 51,399 deeply sequenced whole genomes from the NHLBI TOPMed sequencing initiative to perform simultaneous germline and somatic mutation analyses among individuals without leukemogenic point mutations (LPM), which we term CH-LPMneg. We quantified CH by estimating the total mutation burden. Because estimating somatic mutation burden without a paired-tissue sample is challenging, we developed a novel statistical method, the Genomic and Epigenomic informed Mutation (GEM) rate, that uses external genomic and epigenomic data sources to distinguish artifactual signals from true somatic mutations. We performed a genome-wide association study of GEM to discover the germline determinants of CH-LPMneg. After fine-mapping and variant-to-gene analyses, we identified seven genes associated with CH-LPMneg (TCL1A, TERT, SMC4, NRIP1, PRDM16, MSRA, SCARB1), and one locus associated with a sex-associated mutation pathway (SRGAP2C). We performed a secondary analysis excluding individuals with mCAs, finding that the genetic architecture was largely unaffected by their inclusion. Functional analyses of SMC4 and NRIP1 implicated altered HSC self-renewal and proliferation as the primary mediator of mutation burden in blood. We then performed comprehensive multi-tissue transcriptomic analyses, finding that the expression levels of 404 genes are associated with GEM. Finally, we performed phenotypic association meta-analyses across four cohorts, finding that GEM is associated with increased white blood cell count and increased risk for incident peripheral artery disease, but is not significantly associated with incident stroke or coronary disease events. Overall, we develop GEM for quantifying mutation burden from WGS without a paired-tissue sample and use GEM to discover the genetic, genomic, and phenotypic correlates of CH-LPMneg.

5.
bioRxiv ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39314398

RESUMO

Characterizing DNA methylation patterns is important for addressing key questions in evolutionary biology, geroscience, and medical genomics. While costs are decreasing, whole-genome DNA methylation profiling remains prohibitively expensive for most population-scale studies, creating a need for cost-effective, reduced representation approaches (i.e., assays that rely on microarrays, enzyme digests, or sequence capture to target a subset of the genome). Most common whole genome and reduced representation techniques rely on bisulfite conversion, which can damage DNA resulting in DNA loss and sequencing biases. Enzymatic methyl sequencing (EM-seq) was recently proposed to overcome these issues, but thorough benchmarking of EM-seq combined with cost-effective, reduced representation strategies has not yet been performed. To do so, we optimized Targeted Methylation Sequencing protocol (TMS)-which profiles ∼4 million CpG sites-for miniaturization, flexibility, and multispecies use at a cost of ∼$80. First, we tested modifications to increase throughput and reduce cost, including increasing multiplexing, decreasing DNA input, and using enzymatic rather than mechanical fragmentation to prepare DNA. Second, we compared our optimized TMS protocol to commonly used techniques, specifically the Infinium MethylationEPIC BeadChip (n=55 paired samples) and whole genome bisulfite sequencing (n=6 paired samples). In both cases, we found strong agreement between technologies (R² = 0.97 and 0.99, respectively). Third, we tested the optimized TMS protocol in three non-human primate species (rhesus macaques, geladas, and capuchins). We captured a high percentage (mean=77.1%) of targeted CpG sites and produced methylation level estimates that agreed with those generated from reduced representation bisulfite sequencing (R² = 0.98). Finally, we applied our protocol to profile age-associated DNA methylation variation in two subsistence-level populations-the Tsimane of lowland Bolivia and the Orang Asli of Peninsular Malaysia-and found age-methylation patterns that were strikingly similar to those reported in high income cohorts, despite known differences in age-health relationships between lifestyle contexts. Altogether, our optimized TMS protocol will enable cost-effective, population-scale studies of genome-wide DNA methylation levels across human and non-human primate species.

6.
Nat Commun ; 15(1): 7858, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251642

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) is linked to diverse aging-related diseases, including hematologic malignancy and atherosclerotic cardiovascular disease (ASCVD). While CHIP is common among older adults, the underlying factors driving its development are largely unknown. To address this, we performed whole-exome sequencing on 8,374 blood DNA samples collected from 4,187 Atherosclerosis Risk in Communities Study (ARIC) participants over a median follow-up of 21 years. During this period, 735 participants developed incident CHIP. Splicing factor genes (SF3B1, SRSF2, U2AF1, and ZRSR2) and TET2 CHIP grow significantly faster than DNMT3A non-R882 clones. We find that age at baseline and sex significantly influence the incidence of CHIP, while ASCVD and other traditional ASCVD risk factors do not exhibit such associations. Additionally, baseline synonymous passenger mutations are strongly associated with CHIP status and are predictive of new CHIP clone acquisition and clonal growth over extended follow-up, providing valuable insights into clonal dynamics of aging hematopoietic stem and progenitor cells. This study also reveals associations between germline genetic variants and incident CHIP. Our comprehensive longitudinal assessment yields insights into cell-intrinsic and -extrinsic factors contributing to the development and progression of CHIP clones in older adults.


Assuntos
Hematopoiese Clonal , Dioxigenases , Humanos , Hematopoiese Clonal/genética , Masculino , Feminino , Idoso , Estudos Longitudinais , Pessoa de Meia-Idade , Dioxigenases/genética , DNA Metiltransferase 3A , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Aterosclerose/genética , Fatores de Risco , Sequenciamento do Exoma , Proteínas de Ligação a DNA/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Envelhecimento/genética , Incidência , Mutação
7.
Sci Immunol ; 9(99): eadp3475, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303018

RESUMO

Heat is a cardinal feature of inflammation, yet its impacts on immune cells remain uncertain. We show that moderate-grade fever temperatures (39°C) increased murine CD4 T cell metabolism, proliferation, and inflammatory effector activity while decreasing regulatory T cell suppressive capacity. However, heat-exposed T helper 1 (TH1) cells selectively developed mitochondrial stress and DNA damage that activated Trp53 and stimulator of interferon genes pathways. Although many TH1 cells subjected to such temperatures died, surviving TH1 cells exhibited increased mitochondrial mass and enhanced activity. Electron transport chain complex 1 (ETC1) was rapidly impaired under fever-range temperatures, a phenomenon that was specifically detrimental to TH1 cells. TH1 cells with elevated DNA damage and ETC1 signatures were also detected in human chronic inflammation. Thus, fever-relevant temperatures disrupt ETC1 to selectively drive apoptosis or adaptation of TH1 cells to maintain genomic integrity and enhance effector functions.


Assuntos
Dano ao DNA , Febre , Inflamação , Mitocôndrias , Animais , Dano ao DNA/imunologia , Camundongos , Inflamação/imunologia , Febre/imunologia , Humanos , Mitocôndrias/imunologia , Camundongos Endogâmicos C57BL , Células Th1/imunologia , Feminino , Masculino
8.
Circ Res ; 135(9): 890-909, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39263750

RESUMO

BACKGROUND: Salt sensitivity of blood pressure (SSBP), characterized by acute changes in blood pressure with changes in dietary sodium intake, is an independent risk factor for cardiovascular disease and mortality in people with and without hypertension. We previously found that elevated sodium concentration activates antigen-presenting cells (APCs), resulting in high blood pressure, but the mechanisms are unknown. Here, we hypothesized that APC-specific JAK2 (Janus kinase 2) through STAT3 (signal transducer and activator of transcription 3) and SMAD3 (small mothers against decapentaplegic homolog 3) contributes to SSBP. METHODS: We performed bulk or single-cell transcriptomic analyses following in vitro monocytes exposed to high salt and in vivo high sodium treatment in humans using a rigorous salt-loading/depletion protocol to phenotype SSBP. We also used a myeloid cell-specific CD11c+ JAK2 knockout mouse model and measured blood pressure with radiotelemetry after N-omega-nitro-L-arginine-methyl ester and a high salt diet treatment. We used flow cytometry for immunophenotyping and measuring cytokine levels. Fluorescence in situ hybridization and immunohistochemistry were performed to spatially visualize the kidney's immune cells and cytokine levels. Echocardiography was performed to assess cardiac function. RESULTS: We found that high salt treatment upregulates gene expression of the JAK/STAT/SMAD pathway while downregulating inhibitors of this pathway, such as suppression of cytokine signaling and cytokine-inducible SH2, in human monocytes. Expression of the JAK2 pathway genes mirrored changes in blood pressure after salt loading and depletion in salt-sensitive but not salt-resistant humans. Ablation of JAK2, specifically in CD11c+ APCs, attenuated salt-induced hypertension in mice with SSBP. Mechanistically, we found that SMAD3 acted downstream of JAK2 and STAT3, leading to increased production of highly reactive isolevuglandins and proinflammatory cytokine IL (interleukin)-6 in renal APCs, which activate T cells and increase production of IL-17A, IL-6, and TNF-α (tumor necrosis factor-alpha). CONCLUSIONS: Our findings reveal the APC JAK2 signaling pathway as a potential target for the diagnosis and treatment of SSBP in humans.


Assuntos
Pressão Sanguínea , Hipertensão , Janus Quinase 2 , Camundongos Knockout , Fator de Transcrição STAT3 , Cloreto de Sódio na Dieta , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Animais , Humanos , Camundongos , Cloreto de Sódio na Dieta/efeitos adversos , Masculino , Fator de Transcrição STAT3/metabolismo , Hipertensão/metabolismo , Proteína Smad3/metabolismo , Proteína Smad3/genética , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Células Mieloides/enzimologia , Feminino , Monócitos/metabolismo , Monócitos/efeitos dos fármacos
9.
Nat Med ; 30(9): 2641-2647, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39107561

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP) has been associated with an increased risk of cardiovascular (CV) disease in the general population. Currently, it is unclear whether this association is observed in large clinical trial cohorts with a high burden of existing CV disease or whether CV therapies can mitigate CHIP-associated CV risk. To address these questions, we studied 63,700 patients from five randomized trials that tested established therapies for CV disease, including treatments targeting the proteins PCSK9, SGLT2, P2Y12 and FXa. During a median follow-up of 2.5 years, 7,453 patients had at least one CV event (CV death, myocardial infarction (MI), ischemic stroke or coronary revascularization). The adjusted hazard ratio (aHR) for CV events for CHIP+ patients was 1.07 (95% CI: 0.99-1.16, P = 0.08), with consistent risk estimates across each component of CV risk. Significant heterogeneity in the risk of MI was observed, such that CHIP+ patients had a 30% increased risk of first MI (aHR = 1.31 (1.05-1.64), P = 0.02) but no increased risk of recurrent MI (aHR = 0.94 (0.79-1.13), Pint = 0.008), as compared to CHIP- patients. Moreover, no significant heterogeneity in treatment effect between individuals with and without CHIP was observed for any of the therapies studied in the five trials. These results indicate that in clinical trial populations, CHIP is associated with incident but not recurrent coronary events and that the presence of CHIP does not appear to identify patients who will derive greater benefit from commonly used CV therapies.


Assuntos
Doenças Cardiovasculares , Hematopoiese Clonal , Humanos , Hematopoiese Clonal/genética , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Infarto do Miocárdio/epidemiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento , Fatores de Risco
10.
Blood ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39102652

RESUMO

Venous thromboembolism (VTE) is common among older individuals, but provoking factors are not identified in many cases. Patients with myeloid malignancies, especially myeloproliferative neoplasms, are at increased risk for venous thrombosis. Clonal hematopoiesis of indeterminate potential (CHIP), a precursor state to myeloid malignancies, is common among the elderly and may similarly predispose to venous thrombosis. We evaluated overall and genotype-specific associations between CHIP and prevalent and incident VTE in >400,000 samples from the UK Biobank. CHIP was modestly associated with incident VTE with a hazard ratio of 1.17 (95% confidence interval (CI) 1.09-1.3; p= 0.002) but was not significantly associated with prevalent VTE with an odds ratio of 1.02 (95% CI 0.81-1.23; p= 0.81). TET2-mutant CHIP was associated with incident VTE with a hazard ratio of 1.33 (95% CI 1.05-1.69; p= 0.02). JAK2 mutations were highly associated with both prevalent and incident VTE risk with odds ratio of 6.58 (95% CI 2.65-16.29; p= 4.7 x 10-5) and hazard ratio of 4.2 (95% CI 2.18-8.08; p= 1.7 x 10-5), respectively, consistent with the thrombophilia associated with JAK2-mutant myeloproliferative neoplasms. The association between JAK2-mutant CHIP and VTE remained significant after excluding potential undiagnosed myeloproliferative neoplasms based on laboratory parameters. Compared to heterozygous factor V Leiden and heterozygous prothrombin gene mutation, JAK2-mutant CHIP was more strongly associated with VTE but was less common. These results indicate that most individuals with CHIP do not have an altered risk of thrombosis, but that individuals with JAK2-mutant CHIP have a significantly elevated risk of VTE.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39127052

RESUMO

OBJECTIVES: To address the need for interactive visualization tools and databases in characterizing multimorbidity patterns across different populations, we developed the Phenome-wide Multi-Institutional Multimorbidity Explorer (PheMIME). This tool leverages three large-scale EHR systems to facilitate efficient analysis and visualization of disease multimorbidity, aiming to reveal both robust and novel disease associations that are consistent across different systems and to provide insight for enhancing personalized healthcare strategies. MATERIALS AND METHODS: PheMIME integrates summary statistics from phenome-wide analyses of disease multimorbidities, utilizing data from Vanderbilt University Medical Center, Mass General Brigham, and the UK Biobank. It offers interactive and multifaceted visualizations for exploring multimorbidity. Incorporating an enhanced version of associationSubgraphs, PheMIME also enables dynamic analysis and inference of disease clusters, promoting the discovery of complex multimorbidity patterns. A case study on schizophrenia demonstrates its capability for generating interactive visualizations of multimorbidity networks within and across multiple systems. Additionally, PheMIME supports diverse multimorbidity-based discoveries, detailed further in online case studies. RESULTS: The PheMIME is accessible at https://prod.tbilab.org/PheMIME/. A comprehensive tutorial and multiple case studies for demonstration are available at https://prod.tbilab.org/PheMIME_supplementary_materials/. The source code can be downloaded from https://github.com/tbilab/PheMIME. DISCUSSION: PheMIME represents a significant advancement in medical informatics, offering an efficient solution for accessing, analyzing, and interpreting the complex and noisy real-world patient data in electronic health records. CONCLUSION: PheMIME provides an extensive multimorbidity knowledge base that consolidates data from three EHR systems, and it is a novel interactive tool designed to analyze and visualize multimorbidities across multiple EHR datasets. It stands out as the first of its kind to offer extensive multimorbidity knowledge integration with substantial support for efficient online analysis and interactive visualization.

12.
Nat Commun ; 15(1): 6732, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112476

RESUMO

T-cells play a critical role in multiple aspects of human health and disease. However, to date the genetic determinants of human T-cell abundance have not been studied at scale because assays quantifying T-cell abundance are not widely used in clinical or research settings. The complete blood count clinical assay quantifies lymphocyte abundance which includes T-cells, B-cells, and NK-cells. To address this gap, we directly estimate T-cell fractions from whole genome sequencing data in over 200,000 individuals from the multi-ethnic TOPMed and All of Us studies. We identified 27 loci associated with T-cell fraction. Interrogating electronic health records identified clinical phenotypes associated with T-cell fraction, including notable changes in T-cell proportions that were highly dynamic over the course of pregnancy. In summary, by estimating T-cell fraction, we obtained new insights into the genetic regulation of T-cells and identified disease consequences of T-cell fractions across the human phenome.


Assuntos
Fenótipo , Linfócitos T , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Feminino , Gravidez , Masculino , Estudo de Associação Genômica Ampla , Sequenciamento Completo do Genoma , Contagem de Linfócitos , Adulto , Polimorfismo de Nucleotídeo Único
13.
Res Sq ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39070619

RESUMO

With age, hematopoietic stem cells can acquire somatic mutations in leukemogenic genes that confer a proliferative advantage in a phenomenon termed "clonal hematopoiesis of indeterminate potential" (CHIP). How these mutations confer a proliferative advantage and result in increased risk for numerous age-related diseases remains poorly understood. We conducted a multiracial meta-analysis of epigenome-wide association studies (EWAS) of CHIP and its subtypes in four cohorts (N=8196) to elucidate the molecular mechanisms underlying CHIP and illuminate how these changes influence cardiovascular disease risk. The EWAS findings were functionally validated using human hematopoietic stem cell (HSC) models of CHIP. A total of 9615 CpGs were associated with any CHIP, 5990 with DNMT3A CHIP, 5633 with TET2 CHIP, and 6078 with ASXL1 CHIP (P <1×10-7). CpGs associated with CHIP subtypes overlapped moderately, and the genome-wide DNA methylation directions of effect were opposite for TET2 and DNMT3A CHIP, consistent with their opposing effects on global DNA methylation. There was high directional concordance between the CpGs shared from the meta-EWAS and human edited CHIP HSCs. Expression quantitative trait methylation analysis further identified transcriptomic changes associated with CHIP-associated CpGs. Causal inference analyses revealed 261 CHIP-associated CpGs associated with cardiovascular traits and all-cause mortality (FDR adjusted p-value <0.05). Taken together, our study sheds light on the epigenetic changes impacted by CHIP and their associations with age-related disease outcomes. The novel genes and pathways linked to the epigenetic features of CHIP may serve as therapeutic targets for preventing or treating CHIP-mediated diseases.

14.
Cancer ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012906

RESUMO

BACKGROUND: Understanding the impact of clonal hematopoiesis of indeterminate potential (CHIP) and mosaic chromosomal alterations (mCAs) on solid tumor risk and mortality can shed light on novel cancer pathways. METHODS: The authors analyzed whole genome sequencing data from the Trans-Omics for Precision Medicine Women's Health Initiative study (n = 10,866). They investigated the presence of CHIP and mCA and their association with the development and mortality of breast, lung, and colorectal cancers. RESULTS: CHIP was associated with higher risk of breast (hazard ratio [HR], 1.30; 95% confidence interval [CI], 1.03-1.64; p = .02) but not colorectal (p = .77) or lung cancer (p = .32). CHIP carriers who developed colorectal cancer also had a greater risk for advanced-stage (p = .01), but this was not seen in breast or lung cancer. CHIP was associated with increased colorectal cancer mortality both with (HR, 3.99; 95% CI, 2.41-6.62; p < .001) and without adjustment (HR, 2.50; 95% CI, 1.32-4.72; p = .004) for advanced-stage and a borderline higher breast cancer mortality (HR, 1.53; 95% CI, 0.98-2.41; p = .06). Conversely, mCA (cell fraction [CF] >3%) did not correlate with cancer risk. With higher CFs (mCA >5%), autosomal mCA was associated with increased breast cancer risk (HR, 1.39; 95% CI, 1.06-1.83; p = .01). There was no association of mCA (>3%) with breast, colorectal, or lung mortality except higher colon cancer mortality (HR, 2.19; 95% CI, 1.11-4.3; p = .02) with mCA >5%. CONCLUSIONS: CHIP and mCA (CF >5%) were associated with higher breast cancer risk and colorectal cancer mortality individually. These data could inform on novel pathways that impact cancer risk and lead to better risk stratification.

15.
medRxiv ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38946975

RESUMO

Background: Clonal hematopoiesis of indeterminate potential (CHIP) is a common inflammatory condition of aging that causes myriad end-organ damage. We have recently shown associations for CHIP with acute kidney injury and with kidney function decline in the general population, with stronger associations for CHIP driven by mutations in genes other than DNMT3A (non- DNMT3A CHIP). Longitudinal kidney function endpoints in individuals with pre-existing chronic kidney disease (CKD) and CHIP have been examined in two previous studies, which reported conflicting findings and were limited by small sample sizes. Methods: In this study, we examined the prospective associations between CHIP and CKD progression events in four cohorts of CKD patients (total N = 5,772). The primary outcome was a composite of 50% kidney function decline or kidney failure. The slope of eGFR decline was examined as a secondary outcome. Mendelian randomization techniques were then used to investigate potential causal effects of CHIP on eGFR decline. Finally, kidney function was assessed in adenine-fed CKD model mice having received a bone marrow transplant recapitulating Tet2 -CHIP compared to controls transplanted wild-type bone marrow. Results: Across all cohorts, the average age was 66.4 years, the average baseline eGFR was 42.6 ml/min/1.73m 2 , and 24% had CHIP. Upon meta-analysis, non- DNMT3A CHIP was associated with a 59% higher relative risk of incident CKD progression (HR 1.59, 95% CI: 1.02-2.47). This association was more pronounced among individuals with diabetes (HR 1.29, 95% CI: 1.03-1.62) and with baseline eGFR ≥ 30 ml/min/1.73m (HR 1.80, 95% CI: 1.11-2.90). Additionally, the annualized slope of eGFR decline was steeper among non- DNMT3A CHIP carriers, relative to non-carriers (ß -0.61 ± 0.31 ml/min/1.73m 2 , p = 0.04). Mendelian randomization analyses suggested a causal role for CHIP in eGFR decline among individuals with diabetes. In a dietary adenine mouse model of CKD, Tet2 -CHIP was associated with lower GFR as well as greater kidney inflammation, tubular injury, and tubulointerstitial fibrosis. Conclusion: Non- DNMT3A CHIP is a potentially targetable novel risk factor for CKD progression.

16.
Nat Aging ; 4(8): 1043-1052, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834882

RESUMO

Clonal hematopoiesis of indeterminate potential (CHIP), whereby somatic mutations in hematopoietic stem cells confer a selective advantage and drive clonal expansion, not only correlates with age but also confers increased risk of morbidity and mortality. Here, we leverage genetically predicted traits to identify factors that determine CHIP clonal expansion rate. We used the passenger-approximated clonal expansion rate method to quantify the clonal expansion rate for 4,370 individuals in the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) cohort and calculated polygenic risk scores for DNA methylation aging, inflammation-related measures and circulating protein levels. Clonal expansion rate was significantly associated with both genetically predicted and measured epigenetic clocks. No associations were identified with inflammation-related lab values or diseases and CHIP expansion rate overall. A proteome-wide search identified predicted circulating levels of myeloid zinc finger 1 and anti-Müllerian hormone as associated with an increased CHIP clonal expansion rate and tissue inhibitor of metalloproteinase 1 and glycine N-methyltransferase as associated with decreased CHIP clonal expansion rate. Together, our findings identify epigenetic and proteomic patterns associated with the rate of hematopoietic clonal expansion.


Assuntos
Hematopoiese Clonal , Epigênese Genética , Proteômica , Hematopoiese Clonal/genética , Humanos , Metilação de DNA , Feminino , Masculino , Células-Tronco Hematopoéticas/metabolismo , Pessoa de Meia-Idade , Proteoma/metabolismo , Proteoma/genética , Inibidor Tecidual de Metaloproteinase-1/genética , Idoso
17.
Nat Med ; 30(9): 2480-2488, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38918629

RESUMO

Diabetes complications occur at higher rates in individuals of African ancestry. Glucose-6-phosphate dehydrogenase deficiency (G6PDdef), common in some African populations, confers malaria resistance, and reduces hemoglobin A1c (HbA1c) levels by shortening erythrocyte lifespan. In a combined-ancestry genome-wide association study of diabetic retinopathy, we identified nine loci including a G6PDdef causal variant, rs1050828 -T (Val98Met), which was also associated with increased risk of other diabetes complications. The effect of rs1050828 -T on retinopathy was fully mediated by glucose levels. In the years preceding diabetes diagnosis and insulin prescription, glucose levels were significantly higher and HbA1c significantly lower in those with versus without G6PDdef. In the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, participants with G6PDdef had significantly higher hazards of incident retinopathy and neuropathy. At the same HbA1c levels, G6PDdef participants in both ACCORD and the Million Veteran Program had significantly increased risk of retinopathy. We estimate that 12% and 9% of diabetic retinopathy and neuropathy cases, respectively, in participants of African ancestry are due to this exposure. Across continentally defined ancestral populations, the differences in frequency of rs1050828 -T and other G6PDdef alleles contribute to disparities in diabetes complications. Diabetes management guided by glucose or potentially genotype-adjusted HbA1c levels could lead to more timely diagnoses and appropriate intensification of therapy, decreasing the risk of diabetes complications in patients with G6PDdef alleles.


Assuntos
Complicações do Diabetes , Retinopatia Diabética , Estudo de Associação Genômica Ampla , Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Humanos , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Retinopatia Diabética/genética , Retinopatia Diabética/epidemiologia , Complicações do Diabetes/genética , Complicações do Diabetes/epidemiologia , Hemoglobinas Glicadas/metabolismo , Masculino , Feminino , População Negra/genética , Polimorfismo de Nucleotídeo Único , Pessoa de Meia-Idade , Glicemia/metabolismo
18.
Circ Genom Precis Med ; 17(4): e004415, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38939956

RESUMO

BACKGROUND: Clonal hematopoiesis of indeterminate potential (CHIP) occurs due to acquired mutations in bone marrow progenitor cells. CHIP confers a 2-fold risk of atherosclerotic cardiovascular disease. However, there are limited data regarding specific cardiovascular phenotypes. The purpose of this study was to define the coronary artery disease phenotype of the CHIP population-based on coronary angiography. METHODS: We recruited 1142 patients from the Vanderbilt University Medical Center cardiac catheterization laboratory and performed DNA sequencing to determine CHIP status. Multivariable logistic regression models and proportional odds models were used to assess the association between CHIP status and angiography phenotypes. RESULTS: We found that 18.4% of patients undergoing coronary angiography had a CHIP mutation. Those with CHIP had a higher risk of having obstructive left main (odds ratio, 2.44 [95% CI, 1.40-4.27]; P=0.0018) and left anterior descending (odds ratio, 1.59 [1.12-2.24]; P=0.0092) coronary artery disease compared with non-CHIP carriers. We additionally found that a specific CHIP mutation, ten eleven translocase 2 (TET2), has a larger effect size on left main stenosis compared with other CHIP mutations. CONCLUSIONS: This is the first invasive assessment of coronary artery disease in CHIP and offers a description of a specific atherosclerotic phenotype in CHIP wherein there is an increased risk of obstructive left main and left anterior descending artery stenosis, especially among TET2 mutation carriers. This serves as a basis for understanding enhanced morbidity and mortality in CHIP.


Assuntos
Hematopoiese Clonal , Doença da Artéria Coronariana , Mutação , Humanos , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Masculino , Feminino , Hematopoiese Clonal/genética , Pessoa de Meia-Idade , Idoso , Angiografia Coronária , Dioxigenases , Proteínas de Ligação a DNA/genética , Proteínas Proto-Oncogênicas/genética , Fenótipo
19.
Nature ; 631(8019): 134-141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38867047

RESUMO

Mosaic loss of the X chromosome (mLOX) is the most common clonal somatic alteration in leukocytes of female individuals1,2, but little is known about its genetic determinants or phenotypic consequences. Here, to address this, we used data from 883,574 female participants across 8 biobanks; 12% of participants exhibited detectable mLOX in approximately 2% of leukocytes. Female participants with mLOX had an increased risk of myeloid and lymphoid leukaemias. Genetic analyses identified 56 common variants associated with mLOX, implicating genes with roles in chromosomal missegregation, cancer predisposition and autoimmune diseases. Exome-sequence analyses identified rare missense variants in FBXO10 that confer a twofold increased risk of mLOX. Only a small fraction of associations was shared with mosaic Y chromosome loss, suggesting that distinct biological processes drive formation and clonal expansion of sex chromosome missegregation. Allelic shift analyses identified X chromosome alleles that are preferentially retained in mLOX, demonstrating variation at many loci under cellular selection. A polygenic score including 44 allelic shift loci correctly inferred the retained X chromosomes in 80.7% of mLOX cases in the top decile. Our results support a model in which germline variants predispose female individuals to acquiring mLOX, with the allelic content of the X chromosome possibly shaping the magnitude of clonal expansion.


Assuntos
Aneuploidia , Cromossomos Humanos X , Células Clonais , Leucócitos , Mosaicismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alelos , Doenças Autoimunes/genética , Bancos de Espécimes Biológicos , Segregação de Cromossomos/genética , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Células Clonais/metabolismo , Células Clonais/patologia , Exoma/genética , Proteínas F-Box/genética , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa , Leucemia/genética , Leucócitos/metabolismo , Modelos Genéticos , Herança Multifatorial/genética , Mutação de Sentido Incorreto/genética
20.
Nat Commun ; 15(1): 3800, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714703

RESUMO

Clonal hematopoiesis (CH) is characterized by the acquisition of a somatic mutation in a hematopoietic stem cell that results in a clonal expansion. These driver mutations can be single nucleotide variants in cancer driver genes or larger structural rearrangements called mosaic chromosomal alterations (mCAs). The factors that influence the variations in mCA fitness and ultimately result in different clonal expansion rates are not well understood. We used the Passenger-Approximated Clonal Expansion Rate (PACER) method to estimate clonal expansion rate as PACER scores for 6,381 individuals in the NHLBI TOPMed cohort with gain, loss, and copy-neutral loss of heterozygosity mCAs. Our mCA fitness estimates, derived by aggregating per-individual PACER scores, were correlated (R2 = 0.49) with an alternative approach that estimated fitness of mCAs in the UK Biobank using population-level distributions of clonal fraction. Among individuals with JAK2 V617F clonal hematopoiesis of indeterminate potential or mCAs affecting the JAK2 gene on chromosome 9, PACER score was strongly correlated with erythrocyte count. In a cross-sectional analysis, genome-wide association study of estimates of mCA expansion rate identified a TCL1A locus variant associated with mCA clonal expansion rate, with suggestive variants in NRIP1 and TERT.


Assuntos
Aberrações Cromossômicas , Hematopoiese Clonal , Mosaicismo , Humanos , Hematopoiese Clonal/genética , Masculino , Feminino , Estudo de Associação Genômica Ampla , Janus Quinase 2/genética , Telomerase/genética , Telomerase/metabolismo , Perda de Heterozigosidade , Estudos Transversais , Mutação , Pessoa de Meia-Idade , Células-Tronco Hematopoéticas/metabolismo , Polimorfismo de Nucleotídeo Único , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA