Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 24(1): 889, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048947

RESUMO

BACKGROUND: Glioblastoma is an aggressive brain cancer, usually of unknown etiology, and with a very poor prognosis. Survival from diagnosis averages only 3 months if left untreated and this only increases to 12-15 months upon treatment. Treatment options are currently limited and typically comprise radiotherapy plus a course of the DNA-alkylating chemotherapeutic temozolomide. Unfortunately, the disease invariably relapses after several months of treatment with temozolomide, due to the development of resistance to the drug. Increased local tryptophan metabolism is a feature of many solid malignant tumours through increased expression of tryptophan metabolising enzymes. Glioblastomas are notable for featuring increased expression of the tryptophan catabolizing enzymes indole-2,3-dioxygenase-1 (IDO1), and especially tryptophan-2,3-dioxygenase-2 (TDO2). Increased IDO1 and TDO2 activity is known to suppress the cytotoxic T cell response to tumour cells, and this has led to the proposal that the IDO1 and TDO2 enzymes represent promising immuno-oncology targets. In addition to immune modulation, however, recent studies have also identified the activity of these enzymes is important in the development of resistance to chemotherapeutic agents. METHODS: In the current study, the efficacy of a novel dual inhibitor of IDO1 and TDO2, AT-0174, was assessed in an orthotopic mouse model of glioblastoma. C57BL/6J mice were stereotaxically implanted with GL261(luc2) cells into the striatum and then administered either vehicle control, temozolomide (8 mg/kg IP; five 8-day cycles of treatment every 2 days), AT-0174 (120 mg/kg/day PO) or both temozolomide + AT-0174, all given from day 7 after implantation. RESULTS: Temozolomide decreased tumour growth and improved median survival but increased the infiltration of CD4+ Tregs. AT-0174 had no significant effect on tumour growth or survival when given alone, but provided clear synergy in combination with temozolomide, further decreasing tumour growth and significantly improving survival, as well as elevating CD8+ T cell expression and decreasing CD4+ Treg infiltration. CONCLUSION: AT-0174 exhibited an ideal profile for adjunct treatment of glioblastomas with the first-line chemotherapeutic drug temozolomide to prevent development of CD4+ Treg-mediated chemoresistance.


Assuntos
Sinergismo Farmacológico , Glioblastoma , Indolamina-Pirrol 2,3,-Dioxigenase , Temozolomida , Triptofano Oxigenase , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Camundongos , Triptofano Oxigenase/antagonistas & inibidores , Triptofano Oxigenase/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico
2.
Cancer Metab ; 11(1): 7, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226257

RESUMO

BACKGROUND: The impact of non-small cell lung cancer (NSCLC) metabolism on the immune microenvironment is not well understood within platinum resistance. We have identified crucial metabolic differences between cisplatin-resistant (CR) and cisplatin-sensitive (CS) NSCLC cells with elevated indoleamine 2,3-dioxygenase-1 (IDO1) activity in CR, recognized by increased kynurenine (KYN) production. METHODS: Co-culture, syngeneic, and humanize mice models were utilized. C57BL/6 mice were inoculated with either Lewis lung carcinoma mouse cells (LLC) or their platinum-resistant counterpart (LLC-CR) cells. Humanized mice were inoculated with either A (human CS cells) or ALC (human CR cells). Mice were treated with either IDO1 inhibitor or TDO2 (tryptophan 2,3-dioxygenase-2) inhibitor at 200 mg/kg P.O. once a day for 15 days; or with a new-in-class, IDO1/TDO2 dual inhibitor AT-0174 at 170 mg/kg P.O. once a day for 15 days with and without anti-PD1 antibody (10 mg/kg, every 3 days). Immune profiles and KYN and tryptophan (TRP) production were evaluated. RESULTS: CR tumors exhibited a more highly immunosuppressive environment that debilitated robust anti-tumor immune responses. IDO1-mediated KYN production from CR cells suppressed NKG2D on immune effector natural killer (NK) and CD8+ T cells and enhanced immunosuppressive populations of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Importantly, while selective IDO1 inhibition attenuated CR tumor growth, it concomitantly upregulated the TDO2 enzyme. To overcome the compensatory induction of TDO2 activity, we employed the IDO1/TDO2 dual inhibitor, AT-0174. Dual inhibition of IDO1/TDO2 in CR mice suppressed tumor growth to a greater degree than IDO1 inhibition alone. Significant enhancement in NKG2D frequency on NK and CD8+ T cells and a reduction in Tregs and MDSCs were observed following AT-1074 treatment. PD-L1 (programmed death-ligand-1) expression was increased in CR cells; therefore, we assessed dual inhibition + PD1 (programmed cell death protein-1) blocking and report profound anti-tumor growth and improved immunity in CR tumors which in turn extended overall survival in mice. CONCLUSION: Our study reports the presence of platinum-resistant lung tumors that utilize both IDO1/TDO2 enzymes for survival, and to escape immune surveillance as a consequence of KYN metabolites. We also report early in vivo data in support of the potential therapeutic efficacy of the dual IDO1/TDO2 inhibitor AT-0174 as a part of immuno-therapeutic treatment that disrupts tumor metabolism and enhances anti-tumor immunity.

3.
Molecules ; 25(12)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604891

RESUMO

A series of benzene ring substituted ketamine N-alkyl esters were prepared from the corresponding substituted norketamines. Few of the latter have been reported since they have not been generally accessible via known routes. We report a new general route to many of these norketamines via the Neber (oxime to α-aminoketone) rearrangement of readily available substituted 2-phenycyclohexanones. We explored the use of the substituents Cl, Me, OMe, CF3, and OCF3, with a wide range of lipophilic and electronic properties, at all available benzene ring positions. The 2- and 3-substituted compounds were generally more active than 4-substituted compounds. The most generally acceptable substituent was Cl, while the powerful electron-withdrawing substituents CF3 and OCF3 provided fewer effective analogues.


Assuntos
Analgésicos/síntese química , Anestésicos/síntese química , Cicloexanos/síntese química , Ketamina/análogos & derivados , Analgésicos/administração & dosagem , Analgésicos/química , Analgésicos/farmacologia , Anestésicos/administração & dosagem , Anestésicos/química , Anestésicos/farmacologia , Animais , Cicloexanos/administração & dosagem , Cicloexanos/química , Cicloexanos/farmacologia , Regulação para Baixo , Ésteres/química , Concentração Inibidora 50 , Ketamina/química , Estrutura Molecular , Oximas/química , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Relação Estrutura-Atividade
4.
Bioorg Med Chem ; 27(7): 1226-1231, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30792105

RESUMO

N-Aliphatic ester analogues of the non-opioid ketamine (1) retain effective anaesthetic/analgesic properties while minimising ketamine's psychomimetic side-effects. We show that the anaesthetic/analgesic properties of these ester analogues depend critically on the length (from 2 to 4 carbons), polarity and steric cross-section of the aliphatic linker chain. More stable amide and ethylsulfone analogues generally showed weaker anaesthetic/analgesic activity. There was no correlation between the anaesthetic/analgesic properties of the compounds and their binding affinities for the N-methyl-d-aspartate (NMDA) receptor.


Assuntos
Amidas/farmacologia , Anestésicos/farmacologia , Ésteres/farmacologia , Ketamina/farmacologia , Nociceptividade/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Amidas/administração & dosagem , Anestésicos/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Ésteres/administração & dosagem , Feminino , Ketamina/administração & dosagem , Estrutura Molecular , Medição da Dor , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Relação Estrutura-Atividade
5.
J Neurol Sci ; 278(1-2): 85-90, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19157421

RESUMO

The N-terminal cleavage product of human insulin-like growth factor-1 (IGF-1) in the brain is the tripeptide molecule Glypromate (Gly-Pro-Glu). Glypromate has demonstrated neuroprotective effects in numerous in vitro and in vivo models of brain injury and is in clinical trials for the prevention of cognitive impairment following cardiac surgery. NNZ-2566 is a structural analogue of Glypromate, resulting from alpha-methylation of the proline moiety, which has improved the elimination half-life and oral bioavailability over the parent peptide. In vivo, NNZ-2566 reduces injury size in rats subjected to focal stroke. An intravenous infusion of NNZ-2566 of 4 h duration (3-10 mg/kg/h), initiated 3 h after endothelin-induced middle-cerebral artery constriction, significantly reduced infarct area as assessed on day 5. Neuroprotective efficacy in the MCAO model was also observed following oral administration of the drug (30-60 mg/kg), when formulated as a microemulsion. In vitro, NNZ-2566 significantly attenuates apoptotic cell death in primary striatal cultures, suggesting attenuation of apoptosis is one mechanism of action underlying its neuroprotective effects. NNZ-2566 is currently in clinical trials for the treatment of cognitive deficits following traumatic brain injury, and these data further support the development of the drug as a neuroprotective agent for acute brain injury.


Assuntos
Fármacos Neuroprotetores/uso terapêutico , Oligopeptídeos/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Análise Química do Sangue , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Infusões Intravenosas , Masculino , Microdiálise , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacocinética , Ácido Okadáico/farmacologia , Oligopeptídeos/administração & dosagem , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Ratos , Ratos Sprague-Dawley
6.
Bioorg Med Chem Lett ; 16(3): 677-80, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16257207

RESUMO

A series of 1-(1-pyrrolo(iso)quinolinyl)-2-propylamines was synthesised and evaluated as 5-HT(2C) receptor agonists for the treatment of obesity. The general methods of synthesis of the precursor indoles are described. The functional efficacy and radioligand binding data for the compounds at 5-HT(2) receptor subtypes are reported. The analogue which showed the highest 5-HT(2C) binding affinity (27, 1.6nM) was found to be successful in reducing food intake in rats.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Isoquinolinas/farmacologia , Quinolinas/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina , Agonistas do Receptor de Serotonina/farmacologia , Animais , Fármacos Antiobesidade/farmacologia , Modelos Animais de Doenças , Isoquinolinas/química , Pirróis/química , Quinolinas/química , Ensaio Radioligante , Ratos
7.
Curr Top Med Chem ; 3(8): 885-97, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12678838

RESUMO

An association between the brain serotonin (5-HT) system and feeding has been postulated since the 1970's but it has only been in recent years that the nature of 5-HT-mediated hypophagia has become well understood, and the receptor subtypes responsible for the effect better defined. The invention and utilisation of subtype-selective 5-HT receptor antagonists has demonstrated that the 5-HT(2C) receptor is of paramount importance in this regard. Importantly, ethological studies of animal behaviour have shown that the hypophagia resulting from 5-HT(2C) receptor activation is likely to be a consequence of increased satiety and this is in contrast to hypophagia following 5-HT(2A) receptor activation. Furthermore, recent studies have also shown that 5-HT(2C) receptor agonists not only reduce feeding when acutely administered to rats or mice, they can also reduce body weight without inducing tolerance when administered chronically to obese animals. These observations have led researchers to conclude that selective 5-HT(2C) receptor agonists have the potential to be effective anti-obesity agents. Encouragingly, this suggestion is supported by both direct and indirect evidence from clinical studies. Indirect evidence stems from recent observations that the clinically effective anorectic agent d-fenfluramine exerts its hypophagic and weight-loss effects via 5-HT(2C) receptor activation. More direct clinical evidence derives from the use of the prototypical 5-HT(2C) receptor agonist m-chlorophenylpiperazine (mCPP), with which both acute hypophagia and body-weight loss have been observed. The current paper therefore reviews both the pre-clinical and clinical evidence supporting the use of 5-HT(2C) receptor agonists for the treatment of obesity and assesses the developments that have been made in this regard to date.


Assuntos
Obesidade/tratamento farmacológico , Receptores de Serotonina/efeitos dos fármacos , Agonistas do Receptor de Serotonina/uso terapêutico , Animais , Ingestão de Energia , Humanos , Camundongos , Camundongos Knockout , Receptor 5-HT2C de Serotonina , Receptores de Serotonina/genética , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA