Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanophotonics ; 11(2): 305-314, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36533260

RESUMO

In this work, we investigate the effects of bends on the surface plasmon resonances in nanowires (NWs) and isolated edges of planar structures using electron energy loss spectroscopy experiments and theoretical calculations. Previous work showed that the sharp bends in NWs do not affect their resonant modes. Here, we study previously overlooked effects and analyze systematically the evolution of resonant modes for several bending angles from 30° to 180°, showing that bending can have a significant effect on the plasmonic response of a nanostructure. In NWs, the modes can experience significant energy shifts that depend on the aspect ratio of the NW and can cause mode intersection and antinode bunching. We establish the relation between NW modes and edge modes and show that bending can even induce antinode splitting in edge modes. This work demonstrates that bends in plasmonic planar nanostructures can have a profound effect on their optical response and this must be accounted for in the design of optical devices.

2.
J Chem Phys ; 157(15): 154706, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36272801

RESUMO

Materials that exhibit plasmonic response in the UV region can be advantageous for many applications, such as biological photodegradation, photocatalysis, disinfection, and bioimaging. Transition metal nitrides have recently emerged as chemically and thermally stable alternatives to metal-based plasmonic materials. However, most free-standing nitride nanostructures explored so far have plasmonic responses in the visible and near-IR regions. Herein, we report the synthesis of UV-plasmonic Cr2N nanoparticles using a solid-state nitridation reaction. The nanoparticles had an average diameter of 9 ± 5 nm and a positively charged surface that yields stable colloidal suspension. The particles were composed of a crystalline nitride core and an amorphous oxide/oxynitride shell whose thickness varied between 1 and 7 nm. Calculations performed using the finite element method predicted the localized surface plasmon resonance (LSPR) for these nanoparticles to be in the UV-C region (100-280 nm). While a distinctive LSPR peak could not be observed using absorbance measurements, low-loss electron energy loss spectroscopy showed the presence of surface plasmons between 80 and 250 nm (or ∼5 to 15 eV) and bulk plasmons centered around 50-62 nm (or ∼20 to 25 eV). Plasmonic coupling was also observed between the nanoparticles, resulting in resonances between 250 and 400 nm (or ∼2.5 to 5 eV).


Assuntos
Nanopartículas , Nanoestruturas , Ressonância de Plasmônio de Superfície/métodos , Nanoestruturas/química , Óxidos
3.
Microscopy (Oxf) ; 71(Supplement_1): i174-i199, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35275180

RESUMO

Nowadays, sub-50 meV atom-wide electron probes are routinely produced for electron energy loss spectroscopy in transmission electron microscopes due to monochromator technology advances. We review how gradual improvements in energy resolution enabled the study of very low-energy excitations such as lattice phonons, molecular vibrations, infrared plasmons and strongly coupled hybrid modes in nanomaterials. Starting with the theoretical framework needed to treat inelastic electron scattering from phonons in solids, we illustrate contributions in detecting optical surface phonons in photonic structures. We discuss phonon mapping capabilities in real and reciprocal space, and the localized phonon response near nano-/atomic-scale structural features. We also survey the progress of aloof spectroscopy in studying vibrations in organic materials and applications in measuring local temperature and photonic density of states in single nanostructures using phonon scattering. We then turn towards studies on infrared plasmons in metals and semiconductors. Spectroscopy analyses now extend towards probing extremely complex broadband platforms, the effects of defects and nanogaps, and some far-reaching investigations towards uncovering plasmon lifetime and 3D photonic density of states. In doped semiconductors, we review research on the use of the electron probe to correlate local doping concentration and atomic-scale defects with the plasmonic response. Finally, we discuss advances in studying strong coupling phenomena in plasmon-exciton and plasmon-phonon systems. Overall, the wealth of information gained extends our knowledge about nanomaterial properties and elementary excitations, illustrating the powerful capabilities of high-energy resolution scanning transmission electron microscopy-electron energy loss spectrometry.

4.
ACS Nano ; 15(6): 10553-10564, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34114794

RESUMO

Plasmonic nanoparticles are ideal candidates for hot-electron-assisted applications, but their narrow resonance region and limited hotspot number hindered the energy utilization of broadband solar energy. Inspired by tree branches, we designed and chemically synthesized silver fractals, which enable self-constructed hotspots and multiple plasmonic resonances, extending the broadband generation of hot electrons for better matching with the solar radiation spectrum. We directly revealed the plasmonic origin, the spatial distribution, and the decay dynamics of hot electrons on the single-particle level by using ab initio simulation, dark-field spectroscopy, pump-probe measurements, and electron energy loss spectroscopy. Our results show that fractals with acute tips and narrow gaps can support broadband resonances (400-1100 nm) and a large number of randomly distributed hotspots, which can provide unpolarized enhanced near field and promote hot electron generation. As a proof-of-concept, hot-electron-triggered dimerization of p-nitropthiophenol and hydrogen production are investigated under various irradiations, and the promoted hot electron generation on fractals was confirmed with significantly improved efficiency.

5.
J Chem Phys ; 153(22): 224703, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317278

RESUMO

The surface plasmon response of a cross-sectional segment of a wrinkled gold film is studied using electron energy loss spectroscopy (EELS). EELS data demonstrate that wrinkled gold structures act as a suitable substrate for surface plasmons to propagate. The intense surface variations in these structures facilitate the resonance of a wide range of surface plasmons, leading to the broadband surface plasmon response of these geometries from the near-infrared to visible wavelengths. The metallic nanoparticle boundary element method toolbox is used to simulate plasmon eigenmodes in these structures. Eigenmode simulations show how the diverse morphology of the wrinkled structure leads to its high spectral complexity. Micron-sized structural features that do not provide interactions between segments of the wrinkle have only a small effect on the surface plasmon resonance response, whereas nanofeatures strongly affect the resonant modes of the geometry. According to eigenmode calculations, different eigenenergy shifts around the sharp folds contribute to the broadband response and infrared activity of these structures; these geometrical features also support higher energy (shorter wavelength) symmetric and anti-symmetric plasmon coupling across the two sides of the folds. It is also shown that additional plasmon eigenstates are introduced from hybridization of modes across nanogaps between structural features in close proximity to each other. All of these factors contribute to the broadband response of the wrinkled gold structures.

6.
Microscopy (Oxf) ; 67(suppl_1): i40-i51, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29584929

RESUMO

We present the surface plasmon resonance modes in three-dimensional (3D) upright split ring resonators (SRR) as studied by correlative cathodoluminescence (CL) spectroscopy in a scanning electron microscope (SEM) and electron energy loss spectroscopy (EELS) in a transmission electron microscope. We discuss the challenges inherent in studying the plasmon modes of a 3D nanostructure and how meeting these challenges benefits from the complementary use of EELS and SEM-CL. With the use of EELS, we detect a strong first order mode in the SRR; with comparison to simulations, we are able to identify this as the well-known magnetic dipole moment of the SRR. Combining the EELS spectra with SEM-CL on the same structure reveals the higher order modes present in this 3D nanostructure, which we link to the coupling and hybridization of rim modes present in the two upright hollow pillars of the split ring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...