Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(5): e1011277, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38781242

RESUMO

How enhancers regulate their target genes in the context of 3D chromatin organization is extensively studied and models which do not require direct enhancer-promoter contact have recently emerged. Here, we use the activation of estrogen receptor-dependent enhancers in a breast cancer cell line to study enhancer-promoter communication at two loci. This allows high temporal resolution tracking of molecular events from hormone stimulation to efficient gene activation. We examine how both enhancer-promoter spatial proximity assayed by DNA fluorescence in situ hybridization, and contact frequencies resulting from chromatin in situ fragmentation and proximity ligation, change dynamically during enhancer-driven gene activation. These orthogonal methods produce seemingly paradoxical results: upon enhancer activation enhancer-promoter contact frequencies increase while spatial proximity decreases. We explore this apparent discrepancy using different estrogen receptor ligands and transcription inhibitors. Our data demonstrate that enhancer-promoter contact frequencies are transcription independent whereas altered enhancer-promoter proximity depends on transcription. Our results emphasize that the relationship between contact frequencies and physical distance in the nucleus, especially over short genomic distances, is not always a simple one.


Assuntos
Cromatina , Elementos Facilitadores Genéticos , Estrogênios , Regiões Promotoras Genéticas , Humanos , Cromatina/genética , Cromatina/metabolismo , Estrogênios/metabolismo , Transcrição Gênica , Células MCF-7 , Neoplasias da Mama/genética , Feminino , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Hibridização in Situ Fluorescente , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Ativação Transcricional , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo
2.
Histochem Cell Biol ; 162(1-2): 53-64, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38625562

RESUMO

Extrachromosomal DNA (ecDNA) are circular regions of DNA that are found in many cancers. They are an important means of oncogene amplification, and correlate with treatment resistance and poor prognosis. Consequently, there is great interest in exploring and targeting ecDNA vulnerabilities as potential new therapeutic targets for cancer treatment. However, the biological significance of ecDNA and their associated regulatory control remains unclear. Light microscopy has been a central tool in the identification and characterisation of ecDNA. In this review we describe the different cellular models available to study ecDNA, and the imaging tools used to characterise ecDNA and their regulation. The insights gained from quantitative imaging are discussed in comparison with genome sequencing and computational approaches. We suggest that there is a crucial need for ongoing innovation using imaging if we are to achieve a full understanding of the dynamic regulation and organisation of ecDNA and their role in tumourigenesis.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , DNA/análise
4.
Life Sci Alliance ; 6(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37643867

RESUMO

Enhancers play a critical role in development by precisely modulating spatial, temporal, and cell type-specific gene expression. Sequence variants in enhancers have been implicated in diseases; however, establishing the functional consequences of these variants is challenging because of a lack of understanding of precise cell types and developmental stages where the enhancers are normally active. PAX6 is the master regulator of eye development, with a regulatory landscape containing multiple enhancers driving the expression in the eye. Whether these enhancers perform additive, redundant or distinct functions is unknown. Here, we describe the precise cell types and regulatory activity of two PAX6 retinal enhancers, HS5 and NRE. Using a unique combination of live imaging and single-cell RNA sequencing in dual enhancer-reporter zebrafish embryos, we uncover differences in the spatiotemporal activity of these enhancers. Our results show that although overlapping, these enhancers have distinct activities in different cell types and therefore likely nonredundant functions. This work demonstrates that unique cell type-specific activities can be uncovered for apparently similar enhancers when investigated at high resolution in vivo.


Assuntos
Fator de Transcrição PAX6 , Sequências Reguladoras de Ácido Nucleico , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Retina , Fator de Transcrição PAX6/genética , Proteínas de Peixe-Zebra/genética
5.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37487640

RESUMO

Polycomb repressive complex 1 (PRC1) strongly influences 3D genome organization, mediating local chromatin compaction and clustering of target loci. Several PRC1 subunits have the capacity to form biomolecular condensates through liquid-liquid phase separation in vitro and when tagged and over-expressed in cells. Here, we use 1,6-hexanediol, which can disrupt liquid-like condensates, to examine the role of endogenous PRC1 biomolecular condensates on local and chromosome-wide clustering of PRC1-bound loci. Using imaging and chromatin immunoprecipitation, we show that PRC1-mediated chromatin compaction and clustering of targeted genomic loci-at different length scales-can be reversibly disrupted by the addition and subsequent removal of 1,6-hexanediol to mouse embryonic stem cells. Decompaction and dispersal of polycomb domains and clusters cannot be solely attributable to reduced PRC1 occupancy detected by chromatin immunoprecipitation following 1,6-hexanediol treatment as the addition of 2,5-hexanediol has similar effects on binding despite this alcohol not perturbing PRC1-mediated 3D clustering, at least at the sub-megabase and megabase scales. These results suggest that weak hydrophobic interactions between PRC1 molecules may have a role in polycomb-mediated genome organization.


Assuntos
Cromatina , Proteínas de Drosophila , Animais , Camundongos , Complexo Repressor Polycomb 1 , Núcleo Celular , Proteínas do Grupo Polycomb
6.
Genome Res ; 33(8): 1269-1283, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451823

RESUMO

Contacts between enhancers and promoters are thought to relate to their ability to activate transcription. Investigating factors that contribute to such chromatin interactions is therefore important for understanding gene regulation. Here, we have determined contact frequencies between millions of pairs of cis-regulatory elements from chromosome conformation capture data sets and analyzed a collection of hundreds of DNA-binding factors for binding at regions of enriched contacts. This analysis revealed enriched contacts at sites bound by many factors associated with active transcription. We show that active regulatory elements, independent of cohesin and polycomb, interact with each other across distances of tens of megabases in vertebrate and invertebrate genomes and that interactions correlate and change with activity. However, these ultra-long-range interactions are not dependent on RNA polymerase II transcription or individual transcription cofactors. Using simulations, we show that a model of chromatin and multivalent binding factors can give rise to long-range interactions via bridging-induced clustering. We propose that long-range interactions between cis-regulatory elements are driven by at least three distinct processes: cohesin-mediated loop extrusion, polycomb contacts, and clustering of active regions.


Assuntos
Cromatina , Sequências Reguladoras de Ácido Nucleico , Sequências Reguladoras de Ácido Nucleico/genética , Cromatina/genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas do Grupo Polycomb/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Elementos Facilitadores Genéticos , Fator de Ligação a CCCTC/metabolismo
7.
Nat Commun ; 14(1): 1602, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959177

RESUMO

Interactions between cells and the extracellular matrix, mediated by integrin adhesion complexes, play key roles in fundamental cellular processes, including the sensing and transduction of mechanical cues. Here, we investigate systems-level changes in the integrin adhesome in patient-derived cutaneous squamous cell carcinoma cells and identify the actin regulatory protein Mena as a key node in the adhesion complex network. Mena is connected within a subnetwork of actin-binding proteins to the LINC complex component nesprin-2, with which it interacts and co-localises at the nuclear envelope. Moreover, Mena potentiates the interactions of nesprin-2 with the actin cytoskeleton and the nuclear lamina. CRISPR-mediated Mena depletion causes altered nuclear morphology, reduces tyrosine phosphorylation of the nuclear membrane protein emerin and downregulates expression of the immunomodulatory gene PTX3 via the recruitment of its enhancer to the nuclear periphery. We uncover an unexpected role for Mena at the nuclear membrane, where it controls nuclear architecture, chromatin repositioning and gene expression. Our findings identify an adhesion protein that regulates gene transcription via direct signalling across the nuclear envelope.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Cutâneas , Humanos , Actinas/genética , Actinas/metabolismo , Carcinoma de Células Escamosas/metabolismo , Núcleo Celular/metabolismo , Expressão Gênica , Integrinas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Membrana Nuclear/metabolismo , Lâmina Nuclear/metabolismo , Neoplasias Cutâneas/metabolismo
8.
Nat Cell Biol ; 25(3): 481-492, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690849

RESUMO

Cell proliferation is fundamental for almost all stages of development and differentiation that require an increase in cell number. Although cell cycle phase has been associated with differentiation, the actual process of proliferation has not been considered as having a specific role. Here we exploit human embryonic stem cell-derived endodermal progenitors that we find are an in vitro model for the ventral foregut. These cells exhibit expansion-dependent increases in differentiation efficiency to pancreatic progenitors that are linked to organ-specific enhancer priming at the level of chromatin accessibility and the decommissioning of lineage-inappropriate enhancers. Our findings suggest that cell proliferation in embryonic development is about more than tissue expansion; it is required to ensure equilibration of gene regulatory networks allowing cells to become primed for future differentiation. Expansion of lineage-specific intermediates may therefore be an important step in achieving high-fidelity in vitro differentiation.


Assuntos
Cromatina , Pâncreas , Humanos , Linhagem da Célula/genética , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Pâncreas/metabolismo , Elementos Facilitadores Genéticos/genética
9.
Elife ; 112022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476408

RESUMO

Extrachromosomal DNA (ecDNA) are frequently observed in human cancers and are responsible for high levels of oncogene expression. In glioblastoma (GBM), ecDNA copy number correlates with poor prognosis. It is hypothesized that their copy number, size, and chromatin accessibility facilitate clustering of ecDNA and colocalization with transcriptional hubs, and that this underpins their elevated transcriptional activity. Here, we use super-resolution imaging and quantitative image analysis to evaluate GBM stem cells harbouring distinct ecDNA species (EGFR, CDK4, PDGFRA). We find no evidence that ecDNA routinely cluster with one another or closely interact with transcriptional hubs. Cells with EGFR-containing ecDNA have increased EGFR transcriptional output, but transcription per gene copy is similar in ecDNA compared to the endogenous chromosomal locus. These data suggest that it is the increased copy number of oncogene-harbouring ecDNA that primarily drives high levels of oncogene transcription, rather than specific interactions of ecDNA with each other or with high concentrations of the transcriptional machinery.


Assuntos
Oncogenes , Células-Tronco , Humanos , Oncogenes/genética , DNA
10.
Nat Struct Mol Biol ; 29(9): 891-897, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36097291

RESUMO

The regulatory landscapes of developmental genes in mammals can be complex, with enhancers spread over many hundreds of kilobases. It has been suggested that three-dimensional genome organization, particularly topologically associating domains formed by cohesin-mediated loop extrusion, is important for enhancers to act over such large genomic distances. By coupling acute protein degradation with synthetic activation by targeted transcription factor recruitment, here we show that cohesin, but not CTCF, is required for activation of the target gene Shh by distant enhancers in mouse embryonic stem cells. Cohesin is not required for activation directly at the promoter or by an enhancer located closer to the Shh gene. Our findings support the hypothesis that chromatin compaction via cohesin-mediated loop extrusion allows for genes to be activated by enhancers that are located many hundreds of kilobases away in the linear genome and suggests that cohesin is dispensable for enhancers located more proximally.


Assuntos
Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Elementos Facilitadores Genéticos/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Mamíferos/genética , Camundongos , Fatores de Transcrição/metabolismo , Coesinas
11.
Mol Cell ; 82(17): 3312, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055207
12.
Mol Cell ; 82(12): 2188-2189, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35714583

RESUMO

In a recent issue of Science, Gabriele et al. have, for the first time, quantified the dynamics of a topologically associating domain (TAD) in live cells by coupling super-resolution imaging and computational modelling, concluding that a TAD spends most of its life in a "partially extruded state" and that CTCF-CTCF loops are rare.


Assuntos
Cromatina , Fator de Ligação a CCCTC/genética
13.
Nat Cell Biol ; 24(3): 284-285, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35256777

Assuntos
Eucariotos
14.
Wellcome Open Res ; 6: 265, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34796278

RESUMO

Background: The ability to visualise specific mammalian gene loci in living cells is important for understanding the dynamic processes linked to transcription. However, some of the tools used to target mammalian genes for live cell imaging, such as dCas9, have been reported to themselves impede processes linked to transcription. The MUC4 gene is a popular target for live cell imaging studies due to the repetitive nature of sequences within some exons of this gene. Methods: We set out to compare the impact of dCas9 and TALE-based imaging tools on MUC4 expression, including in human cell lines previously reported as expressing MUC4. Results: We were unable to detect MUC4 mRNA in these cell lines. Moreover, analysis of publicly available data for histone modifications associated with transcription, and data for transcription itself, indicate that neither MUC4, nor any of the mucin gene family are significantly expressed in the cell lines where dCas9 targeting has been reported to repress MUC4 and MUC1 expression, or in the cell lines where dCas13 has been used to report MUC4 RNA detection in live cells. Conclusions: Methods for visualising specific gene loci and gene transcripts in live human cells are very challenging. Our data suggest that care should be given to the choice of the most appropriate cell lines for these analyses and that orthogonal methods of assaying gene expression be carefully compared.

15.
Elife ; 102021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34796872

RESUMO

Mutations or genetic variation in noncoding regions of the genome harbouring cis-regulatory elements (CREs), or enhancers, have been widely implicated in human disease and disease risk. However, our ability to assay the impact of these DNA sequence changes on enhancer activity is currently very limited because of the need to assay these elements in an appropriate biological context. Here, we describe a method for simultaneous quantitative assessment of the spatial and temporal activity of wild-type and disease-associated mutant human CRE alleles using live imaging in zebrafish embryonic development. We generated transgenic lines harbouring a dual-CRE dual-reporter cassette in a pre-defined neutral docking site in the zebrafish genome. The activity of each CRE allele is reported via expression of a specific fluorescent reporter, allowing simultaneous visualisation of where and when in development the wild-type allele is active and how this activity is altered by mutation.


Assuntos
Elementos Reguladores de Transcrição , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/genética , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Peixe-Zebra/embriologia
16.
Sci Adv ; 7(30)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34290091

RESUMO

Variants in FTO have the strongest association with obesity; however, it is still unclear how those noncoding variants mechanistically affect whole-body physiology. We engineered a deletion of the rs1421085 conserved cis-regulatory module (CRM) in mice and confirmed in vivo that the CRM modulates Irx3 and Irx5 gene expression and mitochondrial function in adipocytes. The CRM affects molecular and cellular phenotypes in an adipose depot-dependent manner and affects organismal phenotypes that are relevant for obesity, including decreased high-fat diet-induced weight gain, decreased whole-body fat mass, and decreased skin fat thickness. Last, we connected the CRM to a genetically determined effect on steroid patterns in males that was dependent on nutritional challenge and conserved across mice and humans. Together, our data establish cross-species conservation of the rs1421085 regulatory circuitry at the molecular, cellular, metabolic, and organismal level, revealing previously unknown contextual dependence of the variant's action.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Obesidade , Adipócitos/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Obesidade/genética , Obesidade/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único
17.
Science ; 372(6546): 1085-1091, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34083488

RESUMO

Whereas coding variants often have pleiotropic effects across multiple tissues, noncoding variants are thought to mediate their phenotypic effects by specific tissue and temporal regulation of gene expression. Here, we investigated the genetic and functional architecture of a genomic region within the FTO gene that is strongly associated with obesity risk. We show that multiple variants on a common haplotype modify the regulatory properties of several enhancers targeting IRX3 and IRX5 from megabase distances. We demonstrate that these enhancers affect gene expression in multiple tissues, including adipose and brain, and impart regulatory effects during a restricted temporal window. Our data indicate that the genetic architecture of disease-associated loci may involve extensive pleiotropy, allelic heterogeneity, shared allelic effects across tissues, and temporally restricted effects.


Assuntos
Tecido Adiposo/metabolismo , Encéfalo/metabolismo , Proteínas de Homeodomínio/genética , Obesidade/genética , Fatores de Transcrição/genética , Alelos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Encéfalo/embriologia , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , Desenvolvimento Embrionário , Elementos Facilitadores Genéticos , Comportamento Alimentar , Preferências Alimentares , Regulação da Expressão Gênica , Haplótipos , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Obesidade/fisiopatologia , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/metabolismo
18.
Nat Commun ; 12(1): 3127, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035299

RESUMO

Cornelia de Lange syndrome is a multisystem developmental disorder typically caused by mutations in the gene encoding the cohesin loader NIPBL. The associated phenotype is generally assumed to be the consequence of aberrant transcriptional regulation. Recently, we identified a missense mutation in BRD4 associated with a Cornelia de Lange-like syndrome that reduces BRD4 binding to acetylated histones. Here we show that, although this mutation reduces BRD4-occupancy at enhancers it does not affect transcription of the pluripotency network in mouse embryonic stem cells. Rather, it delays the cell cycle, increases DNA damage signalling, and perturbs regulation of DNA repair in mutant cells. This uncovers a role for BRD4 in DNA repair pathway choice. Furthermore, we find evidence of a similar increase in DNA damage signalling in cells derived from NIPBL-deficient individuals, suggesting that defective DNA damage signalling and repair is also a feature of typical Cornelia de Lange syndrome.


Assuntos
Dano ao DNA , Reparo do DNA , Síndrome de Cornélia de Lange/genética , Mutação , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Predisposição Genética para Doença/genética , Humanos , Camundongos , RNA-Seq/métodos , Transdução de Sinais/genética , Fatores de Transcrição/genética
19.
Nat Commun ; 12(1): 2910, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006872

RESUMO

Three-dimensional genome organisation and replication timing are known to be correlated, however, it remains unknown whether nuclear architecture overall plays an instructive role in the replication-timing programme and, if so, how. Here we demonstrate that RIF1 is a molecular hub that co-regulates both processes. Both nuclear organisation and replication timing depend upon the interaction between RIF1 and PP1. However, whereas nuclear architecture requires the full complement of RIF1 and its interaction with PP1, replication timing is not sensitive to RIF1 dosage. The role of RIF1 in replication timing also extends beyond its interaction with PP1. Availing of this separation-of-function approach, we have therefore identified in RIF1 dual function the molecular bases of the co-dependency of the replication-timing programme and nuclear architecture.


Assuntos
Núcleo Celular/genética , Período de Replicação do DNA/genética , Células-Tronco Embrionárias Murinas/metabolismo , Proteína Fosfatase 1/genética , Proteínas de Ligação a Telômeros/genética , Animais , Ciclo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/citologia , Ligação Proteica , Proteína Fosfatase 1/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
20.
Exp Mol Med ; 53(4): 483-494, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828231

RESUMO

The zoonotic coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2), which causes COVID-19 (coronavirus disease-2019), has resulted in a pandemic. This has led to an urgent need to understand the molecular determinants of SARS-CoV-2 infection, factors associated with COVID-19 heterogeneity and severity, and therapeutic options for these patients. In this review, we discuss the role of host factors in SARS-CoV-2 infection and describe variations in host factor expression as mechanisms underlying the symptoms and severity of COVID-19. We focus on two host factors, angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2), implicated in SARS-CoV-2 infection. We also discuss genetic variants associated with COVID-19 severity revealed in selected patients and based on genome-wide association studies (GWASs). Furthermore, we highlight important advances in cell and chromatin biology, such as single-cell RNA and chromatin sequencing and chromosomal conformation assays, as methods that may aid in the discovery of viral-host interactions in COVID-19. Understanding how regulation of host factor genes varies in physiological and pathological states might explain the heterogeneity observed in SARS-CoV-2 infection, help identify pathways for therapeutic development, and identify patients most likely to progress to severe COVID-19.


Assuntos
Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Interações Hospedeiro-Patógeno/fisiologia , Serina Endopeptidases/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/etiologia , Expressão Gênica , Variação Genética , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Pulmão/patologia , Pulmão/virologia , Serina Endopeptidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...