Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 17(8): 1637-1647, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29769307

RESUMO

Inhibition of ataxia-telangiectasia mutated (ATM) during radiotherapy of glioblastoma multiforme (GBM) may improve tumor control by short-circuiting the response to radiation-induced DNA damage. A major impediment for clinical implementation is that current inhibitors have limited central nervous system (CNS) bioavailability; thus, the goal was to identify ATM inhibitors (ATMi) with improved CNS penetration. Drug screens and refinement of lead compounds identified AZ31 and AZ32. The compounds were then tested in vivo for efficacy and impact on tumor and healthy brain. Both AZ31 and AZ32 blocked the DNA damage response and radiosensitized GBM cells in vitro AZ32, with enhanced blood-brain barrier (BBB) penetration, was highly efficient in vivo as radiosensitizer in syngeneic and human, orthotopic mouse glioma model compared with AZ31. Furthermore, human glioma cell lines expressing mutant p53 or having checkpoint-defective mutations were particularly sensitive to ATMi radiosensitization. The mechanism for this p53 effect involves a propensity to undergo mitotic catastrophe relative to cells with wild-type p53. In vivo, apoptosis was >6-fold higher in tumor relative to healthy brain after exposure to AZ32 and low-dose radiation. AZ32 is the first ATMi with oral bioavailability shown to radiosensitize glioma and improve survival in orthotopic mouse models. These findings support the development of a clinical-grade, BBB-penetrating ATMi for the treatment of GBM. Importantly, because many GBMs have defective p53 signaling, the use of an ATMi concurrent with standard radiotherapy is expected to be cancer-specific, increase the therapeutic ratio, and maintain full therapeutic effect at lower radiation doses. Mol Cancer Ther; 17(8); 1637-47. ©2018 AACR.


Assuntos
Barreira Hematoencefálica/metabolismo , Glioma/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Radiossensibilizantes/uso terapêutico , Administração Oral , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Radiossensibilizantes/farmacologia
2.
Clin Cancer Res ; 19(12): 3189-200, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23620409

RESUMO

PURPOSE: Glioblastoma multiforme (GBM) is the most lethal form of brain cancer with a median survival of only 12 to 15 months. Current standard treatment consists of surgery followed by chemoradiation. The poor survival of patients with GBM is due to aggressive tumor invasiveness, an inability to remove all tumor tissue, and an innate tumor chemo- and radioresistance. Ataxia-telangiectasia mutated (ATM) is an excellent target for radiosensitizing GBM because of its critical role in regulating the DNA damage response and p53, among other cellular processes. As a first step toward this goal, we recently showed that the novel ATM kinase inhibitor KU-60019 reduced migration, invasion, and growth, and potently radiosensitized human glioma cells in vitro. EXPERIMENTAL DESIGN: Using orthotopic xenograft models of GBM, we now show that KU-60019 is also an effective radiosensitizer in vivo. Human glioma cells expressing reporter genes for monitoring tumor growth and dispersal were grown intracranially, and KU-60019 was administered intratumorally by convection-enhanced delivery or osmotic pump. RESULTS: Our results show that the combined effect of KU-60019 and radiation significantly increased survival of mice 2- to 3-fold over controls. Importantly, we show that glioma with mutant p53 is much more sensitive to KU-60019 radiosensitization than genetically matched wild-type glioma. CONCLUSIONS: Taken together, our results suggest that an ATM kinase inhibitor may be an effective radiosensitizer and adjuvant therapy for patients with mutant p53 brain cancers.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Neoplasias Encefálicas/terapia , Glioma/terapia , Morfolinas/administração & dosagem , Tioxantenos/administração & dosagem , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/patologia , Humanos , Camundongos , Mutação , Tolerância a Radiação/efeitos dos fármacos , Radiação Ionizante , Proteína Supressora de Tumor p53/genética
3.
Adv Drug Deliv Rev ; 64(7): 605-13, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22178615

RESUMO

Research into the diagnosis and treatment of central nervous system (CNS) diseases has been enhanced by rapid advances in nanotechnology and an expansion in the library of nanostructured carriers. This review discusses the latest applications of nanomaterials in the CNS with an emphasis on brain tumors. Novel administration routes and transport mechanisms for nanomaterial-mediated CNS delivery of diagnostic and therapeutic agents to bypass or cross the blood brain barrier (BBB) are also discussed. These include temporary disruption of the BBB, use of impregnated polymers (polymer wafers), convection-enhanced delivery (CED), and intranasal delivery. Moreover, an in vitro BBB model capable of mimicking geometrical, cellular and rheological features of the human cerebrovasculature has been developed. This is a useful tool that can be used for screening CNS nanoparticles or therapeutics prior to in vivo and clinical investigation. A discussion of this novel model is included.


Assuntos
Doenças do Sistema Nervoso Central/diagnóstico , Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/administração & dosagem , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/metabolismo , Usos Diagnósticos de Compostos Químicos , Portadores de Fármacos/administração & dosagem , Humanos , Preparações Farmacêuticas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA