Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol Resour ; 22(1): 66-85, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34152681

RESUMO

Polymorphism for immune functions can explain significant variation in health and reproductive success within species. Drastic loss in genetic diversity at such loci constitutes an extinction risk and should be monitored in species of conservation concern. However, effective implementations of genome-wide immune polymorphism sets into high-throughput genotyping assays are scarce. Here, we report the design and validation of a microfluidics-based amplicon sequencing assay to comprehensively capture genetic variation in Alpine ibex (Capra ibex). This species represents one of the most successful large mammal restorations recovering from a severely depressed census size and a massive loss in diversity at the major histocompatibility complex (MHC). We analysed 65 whole-genome sequencing sets of the Alpine ibex and related species to select the most representative markers and to prevent primer binding failures. In total, we designed ~1,000 amplicons densely covering the MHC, further immunity-related genes as well as randomly selected genome-wide markers for the assessment of neutral population structure. Our analysis of 158 individuals shows that the genome-wide markers perform equally well at resolving population structure as RAD-sequencing or low-coverage genome sequencing data sets. Immunity-related loci show unexpectedly high degrees of genetic differentiation within the species. Such information can now be used to define highly targeted individual translocations. Our design strategy can be realistically implemented into genetic surveys of a large range of species. In conclusion, leveraging whole-genome sequencing data sets to design targeted amplicon assays allows the simultaneous monitoring of multiple genetic risk factors and can be translated into species conservation recommendations.


Assuntos
Cabras , Imunogenética , Animais , Humanos
2.
Nat Ecol Evol ; 3(9): 1359-1364, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31477848

RESUMO

Many studies document negative inbreeding effects on individuals, and conservation efforts to preserve rare species routinely employ strategies to reduce inbreeding. Despite this, there are few clear examples in nature of inbreeding decreasing the growth rates of populations, and the extent of population-level effects of inbreeding in the wild remains controversial. Here, we take advantage of a long-term dataset of 26 reintroduced Alpine ibex (Capra ibex ibex) populations spanning nearly 100 years to show that inbreeding substantially reduced per capita population growth rates, particularly for populations in harsher environments. Populations with high average inbreeding (F ≈ 0.2) had population growth rates reduced by 71% compared with populations with no inbreeding. Our results show that inbreeding can have long-term demographic consequences even when environmental variation is large and deleterious alleles may have been purged during bottlenecks. Thus, efforts to guard against inbreeding effects in populations of endangered species have not been misplaced.


Assuntos
Variação Genética , Endogamia , Animais , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Cabras
3.
Evol Appl ; 11(2): 123-139, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29387150

RESUMO

Restoration of lost species ranges to their native distribution is key for the survival of endangered species. However, reintroductions often fail and long-term genetic consequences are poorly understood. Alpine ibex (Capra ibex) are wild goats that recovered from <100 individuals to ~50,000 within a century by population reintroductions. We analyzed the population genomic consequences of the Alpine ibex reintroduction strategy. We genotyped 101,822 genomewide single nucleotide polymorphism loci in 173 Alpine ibex, the closely related Iberian ibex (Capra pyrenaica) and domestic goat (Capra hircus). The source population of all Alpine ibex maintained genetic diversity comparable to Iberian ibex, which experienced less severe bottlenecks. All reintroduced Alpine ibex populations had individually and combined lower levels of genetic diversity than the source population. The reintroduction strategy consisted of primary reintroductions from captive breeding and secondary reintroductions from established populations. This stepwise reintroduction strategy left a strong genomic footprint of population differentiation, which increased with subsequent rounds of reintroductions. Furthermore, analyses of genomewide runs of homozygosity showed recent inbreeding primarily in individuals of reintroduced populations. We showed that despite the rapid census recovery, Alpine ibex carry a persistent genomic signature of their reintroduction history. We discuss how genomic monitoring can serve as an early indicator of inbreeding.

4.
PLoS One ; 12(1): e0170827, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28135293

RESUMO

BACKGROUND: Genetic differentiation in historically connected populations could be the result of genetic drift or adaptation, two processes that imply a need for differing strategies in population management. The aim of our study was to use neutral genetic markers to characterize C. pyrenaica populations genetically and examine results in terms of (i) demographic history, (ii) subspecific classification and (iii) the implications for the management of Iberian ibex. METHODOLOGY/PRINCIPAL FINDINGS: We used 30 neutral microsatellite markers from 333 Iberian ibex to explore genetic diversity in the three main Iberian ibex populations in Spain corresponding to the two persisting subspecies (victoria and hispanica). Our molecular analyses detected recent genetic bottlenecks in all the studied populations, a finding that coincides with the documented demographic decline in C. pyrenaica in recent decades. Genetic divergence between the two C. pyrenaica subspecies (hispanica and victoriae) was substantial (FST between 0.39 and 0.47). Unexpectedly, we found similarly high genetic differentiation between two populations (Sierra Nevada and Maestrazgo) belonging to the subspecies hispanica. The genetic pattern identified in our study could be the result of strong genetic drift due to the severe genetic bottlenecks in the studied populations, caused in turn by the progressive destruction of natural habitat, disease epidemics and/or uncontrolled hunting. CONCLUSIONS: Previous Capra pyrenaica conservation decision-making was based on the clear distinction between the two subspecies (victoriae and hispanica); yet our paper raises questions about the usefulness for conservation plans of the distinction between these subspecies.


Assuntos
Variação Genética , Cabras/genética , Alelos , Animais , Análise por Conglomerados , Genética Populacional , Geografia , Heterozigoto , Filogenia , Densidade Demográfica , Software , Espanha
5.
Proc Biol Sci ; 282(1798): 20141873, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25392468

RESUMO

Heterozygosity-fitness correlations (HFCs) are a useful tool to investigate the effects of inbreeding in wild populations, but are not informative in distinguishing between direct and indirect effects of heterozygosity on fitness-related traits. We tested HFCs in male Alpine ibex (Capra ibex) in a free-ranging population (which suffered a severe bottleneck at the end of the eighteenth century) and used confirmatory path analysis to disentangle the causal relationships between heterozygosity and fitness-related traits. We tested HFCs in 149 male individuals born between 1985 and 2009. We found that standardized multi-locus heterozygosity (MLH), calculated from 37 microsatellite loci, was related to body mass and horn growth, which are known to be important fitness-related traits, and to faecal egg counts (FECs) of nematode eggs, a proxy of parasite resistance. Then, using confirmatory path analysis, we were able to show that the effect of MLH on horn growth was not direct but mediated by body mass and FEC. HFCs do not necessarily imply direct genetic effects on fitness-related traits, which instead can be mediated by other traits in complex and unexpected ways.


Assuntos
Aptidão Genética , Cabras/genética , Heterozigoto , Animais , Peso Corporal , Fezes/parasitologia , Cabras/crescimento & desenvolvimento , Cabras/parasitologia , Cornos/crescimento & desenvolvimento , Itália , Masculino , Repetições de Microssatélites , Nematoides/isolamento & purificação , Estações do Ano
6.
PLoS Genet ; 10(6): e1004438, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945814

RESUMO

The major histocompatibility complex (MHC) is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex). At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2), Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus). We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8%) to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection.


Assuntos
Cabras/genética , Cabras/imunologia , Cadeias beta de HLA-DR/genética , Complexo Principal de Histocompatibilidade/genética , Animais , Sequência de Bases , Desequilíbrio de Ligação/genética , Repetições de Microssatélites/genética , Filogenia , Polimorfismo Genético , Análise de Sequência de DNA
7.
Mol Ecol ; 18(24): 5046-58, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19912536

RESUMO

A population's neutral genetic variation is a composite of its size, degree of isolation and demographic history. Bottlenecks and founder events increase genetic drift, leading to the loss of genetic variation and increased genetic differentiation among populations. Gene flow has the opposite effects. Thus, gene flow can override the genetic patterns caused by founder events. Using 37 microsatellite loci, we investigated the effects of serial bottlenecks on genetic variation and differentiation among 42 Alpine ibex populations in Switzerland with known re-introduction histories. We detected a strong footprint of re-introduction events on contemporary genetic structure, with re-introduction history explaining a substantial part of the genetic differentiation among populations. As a result of the translocation of a considerable number of individuals from the sole formerly surviving population in northern Italy, most of the genetic variation of the ancestral population is now present in the combined re-introduced Swiss populations. However, re-introductions split up the genetic variation among populations, such that each contemporary Swiss population showed lower genetic variation than the ancestral population. As expected, serial bottlenecks had different effects on the expected heterozygosity (He) and standardized number of alleles (sNa). While loss of sNa was higher in the first bottlenecks than in subsequent ones, He declined to a similar degree with each bottleneck. Thus, genetic drift was detected with each bottleneck, even when no loss of sNa was observed. Overall, more than a hundred years after the beginning of this successful re-introduction programme, re-introduction history was the main determinant of today's genetic structure.


Assuntos
Deriva Genética , Genética Populacional , Cabras/genética , Alelos , Animais , Conservação dos Recursos Naturais , Evolução Molecular , Fluxo Gênico , Variação Genética , Genótipo , Itália , Funções Verossimilhança , Repetições de Microssatélites , Modelos Genéticos , Dinâmica Populacional , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA