Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 416: 261-8, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22221875

RESUMO

This study examines platinum group element concentrations (PGE) (i.e. platinum (Pt), palladium (Pd) and rhodium (Rh)) and their spatial distribution in airborne particulate matter fractions (PM) of human health concern in urban and rural areas of Germany. Fractionated airborne dust and PM(10), PM(2.5) and PM(1) samples were collected along a busy road in Frankfurt am Main from July 2008 to April 2010. PM(10) was also sampled in Deuselbach and Neuglobsow between January 2008 and July 2009 to examine their concentrations at rural locations and potential for long-range transport. Pt, Pd and Rh were isolated and pre-enriched in samples using a combination of Te and Hg co-precipitation methods. Concentrations were determined using isotope dilution ICP-Q-MS (in collision mode with He). The highest airborne PGE concentrations were measured in PM(10) from Frankfurt (e.g. 12.4pg Pt/m(3) (mean)), while the rural locations of Deuselbach and Neuglobsow exhibited the lowest levels (e.g. 2pg Pt/m(3) (mean)). PGE concentrations were observed to decline with increasingly smaller PM size fractions from PM(10) to PM(1). All size fractions generally contained higher levels of Pd compared to Pt and Rh, an element of greater concern due to its solubility. PM(2.5) collected in Frankfurt had a mean of 16.1pg Pd/m(3), compared to 9.4pg/m(3) for Pt. PGE concentrations also demonstrated a distinct seasonal relationship, with the greatest levels occurring in winter. Compared to a previous study in 2002, PGE concentrations in fractionated airborne dust have significantly increased over time. Elevated PGE levels were also measured for PM(10) sampled in Neuglobsow and Deuselbach, which could not be attributed to local emission sources. Using the diagnostic meteorological model, CALMET, trajectory analyses confirmed our hypothesis that PGE are being transported over longer distances from other areas of Europe.


Assuntos
Paládio/análise , Material Particulado/análise , Platina/análise , Ródio/análise , Cidades , Alemanha , População Rural
2.
J Environ Monit ; 11(6): 1276-83, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19513460

RESUMO

A comprehensive field intercomparison at four different types of European sites (two rural, one urban and one industrial) comparing three different collectors (wet only, bulk and Bergerhoff samplers) was conducted in the framework of the European Committee for Standardization (CEN) to create an European standard for the deposition of the four elements As, Cd, Ni and Pb. The purpose was to determine whether the proposed methods lead to results within the uncertainty required by the EU's daughter directive (70%). The main conclusion is that a different sampling strategy is needed for rural and industrial sites. Thus, the conclusions on uncertainties and sample approach are presented separately for the different approaches. The wet only and bulk collector ("bulk bottle method") are comparable at wet rural sites where the total deposition arises mainly from precipitation, the expanded uncertainty when comparing these two types of sampler are below 45% for As, Cd and Pb, 67% for Ni. At industrial sites and possibly very dry rural and urban sites it is necessary to use Bergerhoff samplers or a "bulk bottle+funnel method". It is not possible to address the total deposition estimation with these methods, but they will give the lowest estimate of the total deposition. The expanded uncertainties when comparing the Bergerhoff and the bulk bottle+funnel methods are below 50% for As and Cd, and 63% for Pb. The uncertainty for Ni was not addressed since the bulk bottle+funnel method did not include a full digestion procedure which is necessary for sites with high loads of undissolved metals. The lowest estimate can however be calculated by comparing parallel Bergerhoff samplers where the expanded uncertainty for Ni was 24%. The reproducibility is comparable to the between sampler/method uncertainties. Sampling and sample preparation were proved to be the main factors in the uncertainty budget of deposition measurements.


Assuntos
Poluentes Atmosféricos/análise , Arsênio/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Cádmio/análise , Cidades , Monitoramento Ambiental/instrumentação , Europa (Continente) , Humanos , Chumbo/análise , Níquel/análise , Saúde da População Rural , Estações do Ano , Saúde da População Urbana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA