Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(24): 3267-3270, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38465702

RESUMO

Macrocyclic hosts, such as cucurbit[8]uril (CB8), can significantly influence the outcomes of chemical reactions involving encapsulated reactive guests. In this study, we demonstrate that CB8 completely reverses the stereoselectivity of intramolecular [2+2] photo-cycloaddition reactions. Notably, it was also found that CB8 can trigger the unreactive diene to be reactive.

2.
Small ; 20(16): e2307318, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38044287

RESUMO

Cucurbit[7]uril (CB7), a supramolecular host, is employed to control the pathway of photolysis of an aryl azide in an aqueous medium. Normally, photolysis of aryl azides in bulk water culminates predominantly in the formation of azepine derivatives via intramolecular rearrangement. Remarkably, however, when this process unfolds within the protective confinement of the CB7 cavity, it results in a carboline derivative, as a consequence of a C─H amination reaction. The resulting carboline caged by CB7 reveals long-lived room temperature phosphorescence (RTP) in the solid state, with lifetimes extending up to 2.1 s. These findings underscore the potential of supramolecular hosts to modulate the photolysis of aryl azides and to facilitate novel phosphorescent materials.

3.
Chem Sci ; 14(42): 11818-11829, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37920355

RESUMO

The thermodynamic parameters of host-guest binding can be used to describe, understand, and predict molecular recognition events in aqueous systems. However, interpreting binding thermodynamics remains challenging, even for these relatively simple molecules, as they are determined by both direct and solvent-mediated host-guest interactions. In this contribution, we focus on the contributions of water to binding by studying binding thermodynamics, both experimentally and computationally, for a series of nearly rigid, electrically neutral host-guest systems and report the temperature-dependent thermodynamic binding contributions ΔGb(T), ΔHb(T), ΔSb(T), and ΔCp,b. Combining isothermal titration calorimetry (ITC) measurements with molecular dynamics (MD) simulations, we provide insight into the binding forces at play for the macrocyclic hosts cucurbit[n]uril (CBn, n = 7-8) and ß-cyclodextrin (ß-CD) with a range of guest molecules. We find consistently negative changes in heat capacity on binding (ΔCp,b) for all systems studied herein - as well as for literature host-guest systems - indicating increased enthalpic driving forces for binding at higher temperatures. We ascribe these trends to solvation effects, as the solvent properties of water deteriorate as temperature rises. Unlike the entropic and enthalpic contributions to binding, with their differing signs and magnitudes for the classical and non-classical hydrophobic effect, heat capacity changes appear to be a unifying and more general feature of host-guest complex formation in water. This work has implications for understanding protein-ligand interactions and other complex systems in aqueous environments.

4.
J Am Chem Soc ; 145(42): 22903-22912, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37844092

RESUMO

Organosilica nanoparticles that contain responsive organic building blocks as constitutive components of the silica network offer promising opportunities for the development of innovative drug formulations, biomolecule delivery, and diagnostic tools. However, the synthetic challenges required to introduce dynamic and multifunctional building blocks have hindered the realization of biomimicking nanoparticles. In this study, capitalizing on our previous research on responsive nucleic acid-based organosilica nanoparticles, we combine the supramolecular programmability of nucleic acid (NA) interactions with sol-gel chemistry. This approach allows us to create dynamic supramolecular bridging units of nucleic acids in a silica-based scaffold. Two peptide nucleic acid-based monoalkoxysilane derivatives, which self-assemble into a supramolecular bis-alkoxysilane through direct base pairing, were chosen as the noncovalent units inserted into the silica network. In addition, a bridging functional NA aptamer leads to the specific recognition of ATP molecules. In a one-step bottom-up approach, the resulting supramolecular building blocks can be used to prepare responsive organosilica nanoparticles. The supramolecular Watson-Crick-Franklin interactions of the organosilica nanoparticles result in a programmable response to external physical (i.e., temperature) and biological (i.e., DNA and ATP) inputs and thus pave the way for the rational design of multifunctional silica materials with application from drug delivery to theranostics.


Assuntos
Nanopartículas , Ácidos Nucleicos , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Dióxido de Silício/química , Trifosfato de Adenosina
5.
RSC Chem Biol ; 4(10): 760-764, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37799577

RESUMO

Label-free fluorescence-based chemosensing has been increasingly brought into focus due to its simplicity and high sensitivity for intracellular monitoring of molecules. Currently used methods, such as conventional indicator displacement assays (IDAs), pose limitations related to dissociation upon dilution, random diffusion of the released indicators, and high sensitivity to interference by agents from the ambient cellular environment (e.g., salts, enzymes, and proteins). Herein we report a potentially widely applicable strategy to overcome the limitations of conventional IDAs by employing a macrocyclic cucurbit[7]uril (CB7) host covalently coupled to a nitrobenzoxadiazole (NBD) fluorescent dye (CB7-NBD conjugate). As a proof of concept, we demonstrated that the CB7-NBD unimolecular conjugate responded to various target analytes even in the complex live cell system. Moreover, the sensing system was compatible with fluorescence imaging, fluorescence-assisted cell sorting (FACS), and fluorescence spectrometry with a microplate reader. These experiments demonstrated an application of covalently bound unimolecular CB7-NBD conjugate as a sensor for detecting diverse analytes in the intracellular compartment of live cells.

6.
J Am Chem Soc ; 145(42): 22896-22902, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37734737

RESUMO

The development of smart nanoparticles (NPs) that encode responsive features in the structural framework promises to extend the applications of NP-based drugs, vaccines, and diagnostic tools. New nanocarriers would ideally consist of a minimal number of biocompatible components and exhibit multiresponsive behavior to specific biomolecules, but progress is limited by the difficulty of synthesizing suitable building blocks. Through a nature-inspired approach that combines the programmability of nucleic acid interactions and sol-gel chemistry, we report the incorporation of synthetic nucleic acids and analogs, as constitutive components, into organosilica NPs. We prepared different nanomaterials containing single-stranded nucleic acids that are covalently embedded in the silica network. Through the incorporation of functional nucleic acids into the organosilica framework, the particles respond to various biological, physical, and chemical inputs, resulting in detectable physicochemical changes. The one-step bottom-up approach used to prepare organosilica NPs provides multifunctional systems that combine the tunability of oligonucleotides with the stiffness, low cost, and biocompatibility of silica for different applications ranging from drug delivery to sensing.


Assuntos
Nanopartículas , Ácidos Nucleicos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Dióxido de Silício/química
7.
ACS Sens ; 8(7): 2525-2532, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37339775

RESUMO

Electrochemical detection methods are attractive for developing miniaturized, disposable, and portable sensors for molecular diagnostics. In this article, we present a cucurbit[7]uril-based chemosensor with an electrochemical signal readout for the micromolar detection of the muscle relaxant pancuronium bromide in buffer and human urine. This is possible through a competitive binding assay using a chemosensor ensemble consisting of cucurbit[7]uril as the host and an electrochemically active platinum(II) compound as the guest indicator. The electrochemical properties of the indicator are strongly modulated depending on the complexation state, a feature that is exploited to establish a functional chemosensor. Our design avoids cumbersome immobilization approaches on electrode surfaces, which are associated with practical and conceptual drawbacks. Moreover, it can be used with commercially available screen-printed electrodes that require minimal sample volume. The design principle presented here can be applied to other cucurbit[n]uril-based chemosensors, providing an alternative to fluorescence-based assays.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Imidazóis , Humanos , Hidrocarbonetos Aromáticos com Pontes/química , Imidazóis/química , Eletrodos , Técnicas Eletroquímicas
8.
RSC Adv ; 13(4): 2483-2486, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36741178

RESUMO

The novel tris(4-azidophenyl)methanol, a multifunctionalisable aryl azide, is reported. The aryl azide can be used as a protecting group for thiols in peptoid synthesis and can be cleaved under mild reaction conditions via a Staudinger reduction. Moreover, the easily accessible aryl azide can be functionalised via copper-catalysed cycloaddition reactions, providing additional opportunities for materials chemistry applications.

9.
Nat Commun ; 14(1): 518, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36720875

RESUMO

Sensing small biomolecules in biofluids remains challenging for many optical chemosensors based on supramolecular host-guest interactions due to adverse interplays with salts, proteins, and other biofluid components. Instead of following the established strategy of developing alternative synthetic binders with improved affinities and selectivity, we report a molecular engineering approach that addresses this biofluid challenge. Here we introduce a cucurbit[8]uril-based rotaxane chemosensor feasible for sensing the health-relevant biomarker tryptophan at physiologically relevant concentrations, even in protein- and lipid-containing human blood serum and urine. Moreover, this chemosensor enables emission-based high-throughput screening in a microwell plate format and can be used for label-free enzymatic reaction monitoring and chirality sensing. Printed sensor chips with surface-immobilized rotaxane-microarrays are used for fluorescence microscopy imaging of tryptophan. Our system overcomes the limitations of current supramolecular host-guest chemosensors and will foster future applications of supramolecular sensors for molecular diagnostics.


Assuntos
Líquidos Corporais , Rotaxanos , Humanos , Soro , Triptofano
10.
Chem Commun (Camb) ; 58(100): 13947-13950, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36448595

RESUMO

The cross-reactivity to many analytes is one major limitation of most synthetic receptors (SRs) known so far. Herein, we show that through time-resolved competitive binding assays, even unselectively binding SRs can be utilized for analyte distinction and quantification. Furthermore, our methodology has also been applied to analyte mixtures and can be used in a microplate format.


Assuntos
Receptores Artificiais , Virtudes , Ligação Competitiva , Bioensaio
11.
J Am Chem Soc ; 144(29): 13084-13095, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35850489

RESUMO

Insufficient binding selectivity of chemosensors often renders biorelevant metabolites indistinguishable by the widely used indicator displacement assay. Array-based chemosensing methods are a common workaround but require additional effort for synthesizing a chemosensor library and setting up a sensing array. Moreover, it can be very challenging to tune the inherent binding preference of macrocyclic systems such as cucurbit[n]urils (CBn) by synthetic means. Using a novel cucurbit[7]uril-dye conjugate that undergoes salt-induced adaptation, we now succeeded in distinguishing 14 bioorganic analytes from each other through the facile stepwise addition of salts. The salt-specific concentration-resolved emission provides additional information about the system at a low synthetic effort. We present a data-driven approach to translate the human-visible curve differences into intuitive pairwise difference measures. Ion mobility experiments combined with density functional theory calculations gave further insights into the binding mechanism and uncovered an unprecedented ternary complex geometry for CB7. TThis work introduces the non-selectively binding, salt-adaptive cucurbit[n]uril system for sensing applications in biofluids such as urine, saliva, and blood serum.


Assuntos
Hidrocarbonetos Aromáticos com Pontes , Imidazóis , Compostos Heterocíclicos com 2 Anéis , Humanos , Imidazolidinas , Compostos Macrocíclicos
12.
ACS Sens ; 7(8): 2312-2319, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35895991

RESUMO

Chemiluminescence-based detection methods offer a superior signal-to-noise ratio and are commonly adopted for biosensors. This work presents the design and implementation of a supramolecular assay based on a chemiluminescent chemosensor. Specifically, an indicator displacement assay (IDA) with the supramolecular host-guest complex of chemiluminescent phenoxy 1,2-dioxetane and cucurbit[8]uril enables the low-micromolar detection of drugs in human urine and human serum samples. Cucurbit[8]uril thereby acts as a non-surfactant chemiluminescence enhancer and a synthetic receptor. Additionally, we show that adding an equimolar amount of cucurbit[8]uril to a commercially available dioxetane used in standard enzymatic chemiluminescence immunoassays enhances the chemiluminescence by more than 15 times. Finally, we demonstrate that a chemiluminescence resonance energy transfer between a unimolecular macrocyclic cucurbit[7]uril-dye conjugate and a phenoxy 1,2-dioxetane can be utilized to detect the herbicide paraquat at a micromolar concentration in aqueous media.


Assuntos
Herbicidas , Paraquat , Humanos , Água
13.
Chemistry ; 28(38): e202200529, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35612260

RESUMO

The rationalization of non-covalent binding trends is both of fundamental interest and provides new design concepts for biomimetic molecular systems. Cucurbit[n]urils (CBn) are known for a long time as the strongest synthetic binders for a wide range of (bio)organic compounds in water. However, their host-guest binding mechanism remains ambiguous despite their symmetric and simple macrocyclic structure and the wealth of literature reports. We herein report experimental thermodynamic binding parameters (ΔG, ΔH, TΔS) for CB7 and CB8 with a set of hydroxylated adamantanes, di-, and triamantanes as uncharged, rigid, and spherical/ellipsoidal guests. Binding geometries and binding energy decomposition were obtained from high-level theory computations. This study reveals that neither London dispersion interactions, nor electronic energies or entropic factors are decisive, selectivity-controlling factors for CBn complexes. In contrast, peculiar host-related solvation effects were identified as the major factor for rationalizing the unique behavior and record-affinity characteristics of cucurbit[n]urils.


Assuntos
Adamantano , Hidrocarbonetos Aromáticos com Pontes , Hidrocarbonetos Aromáticos com Pontes/química , Eletricidade Estática , Termodinâmica , Água/química
14.
Chem Rev ; 122(3): 3459-3636, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34995461

RESUMO

Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Ânions , Cátions , Sondas Moleculares/química , Nanopartículas/química
15.
Chem Commun (Camb) ; 57(94): 12663-12666, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34775505

RESUMO

Very little information is available on the kinetics of the self-assembly and dissociation of optically silent building blocks despite the importance of such data in the rational design of tailor-made host-guest systems. We introduce here a novel time-resolved method that enables the simultaneous determination of complex formation and complex dissociation rate constants for inclusion-type host-guest complexes. The simultaneous analyte indicator binding assay (SBA) gives also direct access to binding affinities, thus largely simplifying the experimental procedure for a full kinetic and thermodynamic characterisation of host-guest systems.

16.
Adv Mater ; 33(49): e2104614, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34580934

RESUMO

The design and preparation of synthetic binders (SBs) applicable for small biomolecule sensing in aqueous media remains very challenging. SBs designed by the lock-and-key principle can be selective for their target analyte but usually show an insufficient binding strength in water. In contrast, SBs based on symmetric macrocycles with a hydrophobic cavity can display high binding affinities but generally suffer from indiscriminate binding of many analytes. Herein, a completely new and modular receptor design strategy based on microporous hybrid materials is presented yielding zeolite-based artificial receptors (ZARs) which reversibly bind the neurotransmitters serotonin and dopamine with unprecedented affinity and selectivity even in saline biofluids. ZARs are thought to uniquely exploit both the non-classical hydrophobic effect and direct non-covalent recognition motifs, which is supported by in-depth photophysical, and calorimetric experiments combined with full atomistic modeling. ZARs are thermally and chemically robust and can be readily prepared at gram scales. Their applicability for the label-free monitoring of important enzymatic reactions, for (two-photon) fluorescence imaging, and for high-throughput diagnostics in biofluids is demonstrated. This study showcases that artificial receptor based on microporous hybrid materials can overcome standing limitations of synthetic chemosensors, paving the way towards personalized diagnostics and metabolomics.


Assuntos
Neurotransmissores , Água , Corantes , Dopamina
17.
Chem Sci ; 12(27): 9420-9431, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34349916

RESUMO

Fluorescence-detected circular dichroism (FDCD) spectroscopy is applied for the first time to supramolecular host-guest and host-protein systems and compared to the more known electronic circular dichroism (ECD). We find that FDCD can be an excellent choice for common supramolecular applications, e.g. for the detection and chirality sensing of chiral organic analytes, as well as for reaction monitoring. Our comprehensive investigations demonstrate that FDCD can be conducted in favorable circumstances at much lower concentrations than ECD measurements, even in chromophoric and auto-emissive biofluids such as blood serum, overcoming the sensitivity limitation of absorbance-based chiroptical spectroscopy. Besides, the combined use of FDCD and ECD can provide additional valuable information about the system, e.g. the chemical identity of an analyte or hidden aggregation phenomena. We believe that simultaneous FDCD- and ECD-based chiroptical characterization of emissive supramolecular systems will be of general benefit for characterizing fluorescent, chiral supramolecular systems due to the higher information content obtained by their combined use.

18.
Chem Commun (Camb) ; 56(82): 12327-12330, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32945328

RESUMO

Both thermodynamic and kinetic insights are needed for a proper analysis of association and dissociation processes of host-guest interactions. However, kinetic descriptions of supramolecular systems are scarce in the literature because suitable experimental protocols are lacking. We introduce here three time-resolved methods that allow for convenient determination of kinetic rate constants of spectroscopically silent or even insoluble guests with the macrocyclic cucurbit[n]uril family and human serum albumin (HSA) protein as representative hosts.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Albumina Sérica/química , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Imidazóis/química , Imidazóis/metabolismo , Cinética , Albumina Sérica/metabolismo , Termodinâmica
19.
Commun Biol ; 3(1): 383, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669621

RESUMO

The spatiotemporally resolved monitoring of membrane translocation, e.g., of drugs or toxins, has been a long-standing goal. Herein, we introduce the fluorescent artificial receptor-based membrane assay (FARMA), a facile, label-free method. With FARMA, the permeation of more than hundred organic compounds (drugs, toxins, pesticides, neurotransmitters, peptides, etc.) through vesicular phospholipid bilayer membranes has been monitored in real time (µs-h time scale) and with high sensitivity (nM-µM concentration), affording permeability coefficients across an exceptionally large range from 10-9-10-3 cm s-1. From a fundamental point of view, FARMA constitutes a powerful tool to assess structure-permeability relationships and to test biophysical models for membrane passage. From an applied perspective, FARMA can be extended to high-throughput screening by adaption of the microplate reader format, to spatial monitoring of membrane permeation by microscopy imaging, and to the compartmentalized monitoring of enzymatic activity.


Assuntos
Permeabilidade da Membrana Celular , Corantes Fluorescentes , Proteínas de Membrana Transportadoras/metabolismo , Receptores Artificiais , Ensaios de Triagem em Larga Escala , Bicamadas Lipídicas , Lipossomos , Sensibilidade e Especificidade , Análise Espaço-Temporal , Relação Estrutura-Atividade
20.
Chem Commun (Camb) ; 56(49): 6620-6623, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32459225

RESUMO

A simple change has important consequences: the guest-displacement assay (GDA) is introduced which allows for binding affinity determinations of supramolecular complexes with spectroscopically silent hosts and guests. GDA is complementary to indicator-displacement assay for affinity measurements with soluble components, but is superior for insoluble or for weakly binding guests.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...