Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1213814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034580

RESUMO

Introduction: Forests are threatened by increasingly severe and more frequent drought events worldwide. Mono-specific forests, developed as a consequence of widespread management practices established early last century, seem particularly susceptible to global warming and drought compared with mixed-species forests. Although, in several contexts, mixed-species forests display higher species diversity, higher productivity, and higher resilience, previous studies highlighted contrasting findings, with not only many positive but also neutral or negative effects on tree performance that could be related to tree species diversity. Processes underlying this relationship need to be investigated. Wood anatomical traits are informative proxies of tree functioning, and they can potentially provide novel long-term insights in this regard. However, wood anatomical traits are critically understudied in such a context. Here, we assess the role of tree admixture on Pinus sylvestris L. xylem traits such as mean hydraulic diameter, cell wall thickness, and anatomical wood density, and we test the variability of these traits in response to climatic parameters such as temperature, precipitation, and drought event frequency and intensity. Methods: Three monocultural plots of P. sylvestris and three mixed-stand plots of P. sylvestris and Quercus sp. were identified in Poland and Spain, representing Continental and Mediterranean climate types, respectively. In each plot, we analyzed xylem traits from three P. sylvestris trees, for a total of nine trees in monocultures and nine in mixed stands per study location. Results: The results highlighted that anatomical wood density was one of the most sensitive traits to detect tree responses to climatic conditions and drought under different climate and forest types. Inter-specific facilitation mechanisms were detected in the admixture between P. sylvestris and Quercus sp., especially during the early growing season and during stressful events such as spring droughts, although they had negligible effects in the late growing season. Discussion: Our findings suggest that the admixture between P. sylvestris and Quercus sp. increases the resilience of P. sylvestris to extreme droughts. In a global warming scenario, this admixture could represent a useful adaptive management option.

2.
Sci Rep ; 13(1): 15373, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37716997

RESUMO

Forests cover about one-third of Europe's surface and their growth is essential for climate protection through carbon sequestration and many other economic, environmental, and sociocultural ecosystem services. However, reports on how climate change affects forest growth are contradictory, even for same regions. We used 415 unique long-term experiments including 642 plots across Europe covering seven tree species and surveys from 1878 to 2016, and showed that on average forest growth strongly accelerated since the earliest surveys. Based on a subset of 189 plots in Scots pine (the most widespread tree species in Europe) and high-resolution climate data, we identified clear large-regional differences; growth is strongly increasing in Northern Europe and decreasing in the Southwest. A less pronounced increase, which is probably not mainly driven by climate, prevails on large areas of Western, Central and Eastern Europe. The identified regional growth trends suggest adaptive management on regional level for achieving climate-smart forests.


Assuntos
Ecossistema , Florestas , Europa (Continente) , Europa Oriental , Árvores
3.
Ecol Evol ; 13(7): e10238, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37404696

RESUMO

Retention of structural elements such as deadwood and habitat trees at the level of forest stands has been promoted to integrate biodiversity conservation into multiple-use forest management. The conservation value of habitat trees is largely determined by the presence, richness, and abundance of tree-related microhabitats (TreMs). Since TreMs are often lacking in intensively managed forests, an important question of forest conservation is how the abundance and richness of TreMs may be effectively restored. Here, we investigated whether the strict protection of forest through cessation of timber harvesting influenced TreM occurrence at tree and stand levels. For that purpose, we compared four managed and four set-aside stands (0.25 ha each) in the Bialowieza Forest, with identical origin following clear-cuts approximately 100 years ago. We found that the abundance and richness of TreMs on living trees were not significantly different between stands that were either conventionally managed or where active forest management ceased 52 years ago. Yet, our analysis of TreMs on tree species with contrasting life-history traits revealed that short-lived, fast-growing species (pioneers) developed TreMs quicker than longer-lived, slower-growing species. Hence, tree species such as Populus or Betula, which supply abundant and diverse TreMs, can play an important role in accelerating habitat restoration.

4.
Eur J For Res ; : 1-13, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37363183

RESUMO

Forest stand and environmental factors influence soil organic carbon (SOC) storage, but little is known about their relative impacts in different soil layers. Moreover, how environmental factors modulate the impact of stand factors, particularly species mixing, on SOC storage, is largely unexplored. In this study, conducted in 21 forest triplets (two monocultures of different species and their mixture on the same site) distributed in Europe, we tested the hypothesis that stand factors (functional identity and diversity) have stronger effects on topsoil (FF + 0-10 cm) C storage than environmental factors (climatic water availability, clay + silt content, oxalate-extractable Al-Alox) but that the opposite occurs in the subsoil (10-40 cm). We also tested the hypothesis that functional diversity improves SOC storage under high climatic water availability, clay + silt contents, and Alox. We characterized functional identity as the basal area proportion of broadleaved species (beech and/or oak), and functional diversity as the product of broadleaved and conifer (pine) proportions. The results show that functional identity was the main driver of topsoil C storage, while climatic water availability had the largest control on subsoil C storage. Functional diversity decreased topsoil C storage under increasing climatic water availability, but the opposite was observed in the subsoil. Functional diversity effects on topsoil C increased with increasing clay + silt content, while its effects on subsoil C were negative at increasing Alox content. This suggests that functional diversity effect on SOC storage changes along gradients in environmental factors and the direction of effects depends on soil depth.

5.
Sci Total Environ ; 888: 164123, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37182772

RESUMO

Process-based models and empirical modelling techniques are frequently used to (i) explore the sensitivity of tree growth to environmental variables, and (ii) predict the future growth of trees and forest stands under climate change scenarios. However, modelling approaches substantially influence predictions of the sensitivity of trees to environmental factors. Here, we used tree-ring width (TRW) data from 1630 beech trees from a network of 70 plots established across European mountains to build empirical predictive growth models using various modelling approaches. In addition, we used 3-PG and Biome-BGCMuSo process-based models to compare growth predictions with derived empirical models. Results revealed similar prediction errors (RMSE) across models ranging between 3.71 and 7.54 cm2 of basal area increment (BAI). The models explained most of the variability in BAI ranging from 54 % to 87 %. Selected explanatory variables (despite being statistically highly significant) and the pattern of the growth sensitivity differed between models substantially. We identified only five factors with the same effect and the same sensitivity pattern in all empirical models: tree DBH, competition index, elevation, Gini index of DBH, and soil silt content. However, the sensitivity to most of the climate variables was low and inconsistent among the empirical models. Both empirical and process-based models suggest that beech in European mountains will, on average, likely experience better growth conditions under both 4.5 and 8.5 RCP scenarios. The process-based models indicated that beech may grow better across European mountains by 1.05 to 1.4 times in warmer conditions. The empirical models identified several drivers of tree growth that are not included in the current process-based models (e.g., different nutrients) but may have a substantial effect on final results, particularly if they are limiting factors. Hence, future development of process-based models may build upon our findings to increase their ability to correctly capture ecosystem dynamics.


Assuntos
Ecossistema , Fagus , Mudança Climática , Florestas , Árvores
6.
Eur J For Res ; 141(3): 467-480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35469155

RESUMO

While the impacts of forest management options on carbon (C) storage are well documented, the way they affect C distribution among ecosystem components remains poorly investigated. Yet, partitioning of total forest C stocks, particularly between aboveground woody biomass and the soil, greatly impacts the stability of C stocks against disturbances in forest ecosystems. This study assessed the impact of species composition and stand density on C storage in aboveground woody biomass (stem + branches), coarse roots, and soil, and their partitioning in pure and mixed forests in Europe. We used 21 triplets (5 beech-oak, 8 pine-beech, 8 pine-oak mixed stands, and their respective monocultures at the same sites) in seven European countries. We computed biomass C stocks from total stand inventories and species-specific allometric equations, and soil organic C data down to 40 cm depth. On average, the broadleaved species stored more C in aboveground woody biomass than soil, while C storage in pine was equally distributed between both components. Stand density had a strong effect on C storage in tree woody biomass but not in the soil. After controlling for stand basal area, the mixed stands had, on average, similar total C stocks (in aboveground woody biomass + coarse roots + soil) to the most performing monocultures. Although species composition and stand density affect total C stocks and its partitioning between aboveground woody biomass and soil, a large part of variability in soil C storage was unrelated to stand characteristics. Supplementary Information: The online version contains supplementary material available at 10.1007/s10342-022-01453-9.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...